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Abstract

Long-term memory is essential for large lan-
guage model (LLM) agents operating in com-
plex environments, yet existing memory de-
signs are either task-specific and non-transferable,
or task-agnostic but less effective due to low
task-relevance and context explosion from raw
memory retrieval. We propose PLUGMEM, a
task-agnostic plugin memory module that can
be attached to arbitrary LLM agents without
task-specific redesign. Motivated by the fact
that decision-relevant information is concentrated
as abstract knowledge rather than raw experi-
ence, we draw on cognitive science to struc-
ture episodic memories into a compact, exten-
sible knowledge-centric memory graph that ex-
plicitly represents propositional and prescriptive
knowledge. This representation enables efficient
memory retrieval and reasoning over task-relevant
knowledge, rather than verbose raw trajectories,
and departs from other graph-based methods like
GraphRAG by treating knowledge as the unit of
memory access and organization instead of enti-
ties or text chunks. We evaluate PLUGMEM un-
changed across three heterogeneous benchmarks
(long-horizon conversational question answering,
multi-hop knowledge retrieval, and web agent
tasks). The results show that PLUGMEM con-
sistently outperforms task-agnostic baselines and
exceeds task-specific memory designs, while also
achieving the highest information density under a
unified information-theoretic analysis. Code and
data are available at https://github.com/TIMAN-
group/PlugMem.

1Each point corresponds to a memory method evaluated on
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Figure 1. A utility–cost visualization of agentic memory ap-
proaches.1PLUGMEM, evaluated unchanged across heteroge-
neous benchmarks requiring processing multiple memory
types, achieves the highest decision-making utility of mem-
ory at the lowest agent-side memory cost.

1. Introduction
Large language model (LLM) agents increasingly operate
in settings that require long-term memory, where relevant
information is distributed across long interaction histories
and must be reused to support future decisions (Wang et al.,
2024a; Park et al., 2023). However, naively accumulating
past interactions as raw context quickly leads to unbounded
memory growth, high computational cost, and degraded per-
formance (Packer et al., 2024; Liu et al., 2023). To address

at least one of three benchmarks, i.e., LongMemEval (Wu et al.,
2024), HotpotQA (Yang et al., 2018) and WebArena (Zhou et al.,
2024), plotted in a normalized utility–cost space to enable cross-
task visualization and to accommodate baselines that are not ap-
plicable to all benchmarks. Both axes are min–max normalized,
which linearly rescales values to a fixed range (e.g., [0, 1]) while
preserving relative ordering across methods. Curves are obtained
by sweeping the memory token budget. The normalization is ap-
plied solely for visualization; detailed benchmark-specific analyses
using raw PMI values and token numbers are reported in Section 4
and Figure 5.
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Figure 2. PLUGMEM organizes raw memory and outputs refined memory tokens to help the base agent’s decision-making.

this, many agent architectures rely on external memory mod-
ules to store and retrieve past experience. Yet most existing
memory designs tightly couple memory representation and
retrieval to specific tasks or benchmarks, relying on hand-
crafted heuristics for what to store and how to use it (Wang
et al., 2024b; Gutiérrez et al., 2025). While effective in
narrow settings, such task-specific memory modules fail to
generalize: a memory system optimized for long-horizon
conversations does not readily transfer to web navigation,
and vice versa. This limitation motivates the need for a task-
agnostic plug-and-play memory module that can be attached
to arbitrary LLM agents without task-specific redesign, re-
ducing per-task engineering overhead and enabling a single
memory module to be reused across diverse agentic settings.

Designing such a general plugin memory module is chal-
lenging. The most straightforward task-agnostic approach
is retrieval-based memory, where all past experiences are
stored as raw text chunks and retrieved by relevance (op-
tionally augmented with reasoning, as in RAG). However,
this paradigm often fails in practice due to knowledge spar-
sity. Memories that are truly useful for decision-making
are typically condensed and abstract forms of knowledge,
whereas raw memories are verbose, episodic, and domi-
nated by low-level information. For example, when recom-
mending recipes, an agent benefits from knowing a user’s di-
etary preferences and restrictions, which are compact factual
propositions distilled from many interactions, rather than re-
reading long conversation histories. Similarly, when shop-
ping on a previously unseen web interface, an agent needs
generalizable procedural knowledge, i.e., how to search, fil-
ter, and check out, not raw trajectories containing full-page
observations with thousands of irrelevant tokens. Treating
raw episodic memory as directly usable knowledge there-
fore imposes an unnecessary context burden and obscures
the information most relevant for decision-making.

Prior work has attempted to bridge this gap by compressing
or summarizing memory, but largely in task-specific ways.
Memory modules are often engineered to perform well on
a particular benchmark, such as conversational long-term

memory or web-based agents, implicitly assuming a single
dominant type of memory (Wang et al., 2024b; Gutiérrez
et al., 2025). When applied to a different task domain, these
designs rarely transfer without significant task-specific mod-
ifications. This raises a key challenge: how can we design a
general-purpose memory module that simultaneously sup-
ports multiple memory types and adapts to the diverse de-
mands of agentic tasks, and evaluate it in a way that jointly
reflects decision utility and agent-side cost, while allowing
cross-task comparability?

To address the design side of this challenge, we ground
our approach in a principled account of memory organiza-
tion from cognitive science. Decades of research suggest
that the human brain makes a fundamental distinction be-
tween episodic memory (detailed records of experience)
and knowledge-level memory, which can be further divided
into semantic memory (knowing that; factual propositions)
and procedural memory (knowing how; action-oriented
prescriptions) (Tulving, 1972; Squire, 2004). Episodic
memory serves as the source from which propositional
and prescriptive knowledge are abstracted, while the latter
forms are most directly useful for reasoning and decision-
making. This perspective suggests that effective agent mem-
ory should not merely retrieve past experiences, but actively
transform raw episodic memory into structured, knowledge-
dense representations.

Based on these principles, we introduce a novel plugin
memory module PLUGMEM, that performs memory-to-
knowledge abstraction and supports the unified manage-
ment of multiple key memory types across agentic tasks. As
shown in Figure 2, our approach consists of: i) a structuring
module that standardizes heterogeneous raw memories and
extracts propositional and prescriptive knowledge through
hierarchical abstraction, organizing them into a memory
graph; ii) a retrieval module that selects task-relevant sub-
graphs; and iii) a reasoning module that further adapts and
compresses retrieved knowledge for the base agent. Un-
like conventional knowledge graphs that operate on enti-
ties and relations, our memory graph operates on knowl-

2



PlugMem: A Task-Agnostic Plugin Memory Module for LLM Agents

edge units (i.e., propositions and prescriptions) which form
the fundamental units of memory access and manipulation.
PLUGMEM can be viewed as a knowledge-centric form of
GraphRAG (Edge et al., 2025) tailored for memory manage-
ment, where graph nodes are knowledge rather than entities
or text chunks.

Complementary to the design of a general-purpose memory
module, we contribute a novel utility-cost analysis frame-
work that enables fair comparison between different memory
designs across tasks, capturing both performance improve-
ments and memory efficiency. Specifically, we measure
the information density of memory, defined as the decision-
relevant information gain provided to the base agent per
memory token. We implement PLUGMEM and evaluate it
on three heterogeneous and challenging benchmarks: long-
horizon conversational question answering (Wu et al., 2024),
multi-hop knowledge retrieval over Wikipedia (Yang et al.,
2018), and web-based agent tasks (Zhou et al., 2024). Using
the same memory module implementation across all settings,
we demonstrate consistent performance gains over vanilla
task-agnostic baselines and task-specific memory modules,
while incurring lower agent-side memory cost, as illustrated
in Figure 1. Ablation studies further clarify the roles of dif-
ferent components. Since agentic memory ultimately serves
decision-making, task performance is primarily determined
by whether retrieval brings the most useful memory to bear
at decision time. Our structuring module incrementally en-
hances retrieval by organizing heterogeneous experience
into knowledge-centric memory units, yielding additional
performance gains. Meanwhile, the reasoning module sub-
stantially improves efficiency, reducing memory token usage
by one to two orders of magnitude through task-adaptive
condensation. We provide illustrative benchmark examples
in Appendix A.

In summary, our contributions are fourfold:

• Design principles: cognitively motivated principles for
task-agnostic memory in LLM agents.

• Evaluation framework: an information-theoretic mea-
sure of memory utility and efficiency.

• General memory module: a plugin memory system ap-
plicable across heterogeneous agentic benchmarks.

• Reproducibility: released code and experimental results.

2. Related Work
Cognitive Science Based Agent Memory Cognitive sci-
ence characterizes long-term memory as persistent stor-
age, and distinguishing episodic, semantic, and procedu-
ral memory (Atkinson & Shiffrin, 1968; Tulving, 1972;
Squire, 2004). In agentic settings, interactions are naturally
episodic, from which reusable abstractions can be derived,
e.g., factual information such as user preferences can be dis-

tilled into semantic memory (Li et al., 2025), while action
strategies can be abstracted as procedural memory (Wang
et al., 2024b). These abstractions align with more gen-
eral knowledge notions: propositional knowledge as factual
statements and prescriptive knowledge as generalized goal-
directed procedures (Diebolt & Perrin, 2013).

Building on these insights, recent systems incorporate dif-
ferent memory types to support long-context understand-
ing (Lee et al., 2024), long-term interactions (Li et al., 2025),
structured memory organization (Anokhin et al., 2024; Ras-
mussen et al., 2025), and experience-driven strategy refine-
ment (Zhao et al., 2024; Wang et al., 2024b; Fang et al.,
2025). However, most approaches are task-specific and
do not jointly support multiple memory types. In contrast,
PLUGMEM standardizes heterogeneous episodic experience
and organizes extracted knowledge into a propositional-
prescriptive structure, enabling task-agnostic reuse.

Table 1. Comparison of representative agentic memory systems.
M2K indicates if a system transforms working memories into
reusable, abstract knowledge that’s generalizable across tasks.
KaU means if it adopts knowledge as the memory unit. Mech.
characterizes the design of the memory modules, including Str.
(structured memory representations), Ret. (refined retrieval strate-
gies), and Rea. (post-retrieval reasoning or compression). Mem.
denotes the memory type that the system supports, including
Episodic, Semantic, and Procedural memory. Agn. indicates
whether the memory design is task-agnostic.

Meth. M2K KaU Mech. Mem. Agn.
Str. Ret. Rea. E S P

Vanilla Retrieval ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓
Vanilla RAG ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓
GraphRAG ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓✗
A-Mem ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓

Zep ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗
MemoryOS ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗
HippoRAG2 ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗
AWM ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗
ReasoningBank ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗

PLUGMEM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Memory Module Designs Many agent memory systems
adopt retrieval-based external memory, storing past inter-
actions and retrieving them at inference time. Early task-
agnostic methods rely on flat retrieval over unstructured
episodic memory, such as vanilla retrieval and RAG (Lewis
et al., 2021; Wang et al., 2024a), resulting in redundant and
episode-specific memory reuse. Later work introduces struc-
ture over episodic memory, including hierarchical and graph-
based retrieval (e.g., GraphRAG) to support multi-hop rea-
soning (Edge et al., 2025; Sarthi et al., 2024; Gutiérrez et al.,
2025; Wang & Han, 2025). While improving access effi-
ciency, these methods largely preserve episodic traces as
the primary memory unit. In parallel, task-specific systems
explicitly transform experience into higher-level representa-
tions, such as temporal knowledge graphs or workflow mem-
ories (Gutiérrez et al., 2025; Wang et al., 2024b; Ouyang
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et al., 2025). Although effective within fixed tasks, their ab-
stractions are tightly coupled to task assumptions and limit
transferability.

Overall, as shown in Table 1, prior work highlights a distinc-
tion between improving retrieval over episodic memory and
transforming experience into reusable knowledge, with only
the latter supporting cross-task generalization. PLUGMEM
adopts this principle by organizing memory around propo-
sitional and prescriptive knowledge units, enabling more
effective retrieval of decision-relevant information, while
retaining episodic traces as verifiable evidence.

For a more detailed discussion of related work, including the
full versions of the above sections and additional discussion
on memory benchmarks, see Appendix B.

3. Methodology
We present PLUGMEM, a task-agnostic plugin memory mod-
ule to support long-term decision-making for LLM agents.
Rather than treating past interactions as flat episodic text,
PLUGMEM structures experience into knowledge-level rep-
resentations that are more compact, generalizable, and di-
rectly relevant to downstream retrieval and reasoning.

As shown in Figure 2, PLUGMEM consists of three core
components: a structuring module that standardizes het-
erogeneous episodic memories and induces propositional
and prescriptive knowledge; a retrieval module that selects
relevant knowledge from structured memory graphs via
abstraction-aware retrieval; and a reasoning module that
further adapts retrieved knowledge into actionable guidance
for the base agent. In the following sections, we describe
each component in detail.

3.1. Structuring Module

As shown in Figure 3, the structuring module serves as
the foundation of PLUGMEM by transforming raw episodic
experience, such as dialogue turns, document snippets, or
episodic trajectories, into knowledge representations that are
reusable, compact, and aligned with agent decision-making.
Specifically, we structure memory to reflect the role different
information plays in reasoning and action selection.

Our design is guided by three principles motivated by cog-
nitive theories of human memory. First, episodic memory
captures concrete interaction traces and serves primarily as
verifiable evidence rather than directly actionable knowl-
edge. Second, decision-relevant information is most effec-
tively represented at the knowledge level, where semantic
memory encodes factual propositions (“knowing that”) and
procedural memory encodes reusable strategies (“knowing
how”). Third, effective long-term memory requires separat-
ing knowledge abstraction from task-specific execution de-

tails, enabling memory to generalize across heterogeneous
environments. These principles imply that different mem-
ory types should be represented using structural units and
organization logics aligned with their properties. Table 2
summarizes how episodic, semantic, and procedural memo-
ries are mapped to corresponding graph units and structuring
mechanisms, reflecting their functional roles in abstraction,
retrieval, and verification.

Building on this design, the structuring module operational-
izes memory abstraction in two stages: i) standardizing
heterogeneous interaction traces into a unified episodic rep-
resentation, and ii) inducing propositional and prescriptive
knowledge that can be independently indexed and reused
across tasks. We describe each stage as follows.

3.1.1. STANDARDIZE

Episodic memory constitutes the fundamental substrate
from which semantic and procedural memories are de-
rived (Tulving, 1972). For agents, episodic memories orig-
inate from heterogeneous sources, including user–agent
interactions (Wu et al., 2024), factual documents (Yang
et al., 2018), and action trajectories in complex environ-
ments (Zhou et al., 2024). This heterogeneity motivates a
unified, task-agnostic representation that can support down-
stream knowledge induction.

Episodic Formalization. We represent a raw interaction
trace as a sequence of observation-action pairs:

τ = [(ot, at)]
T
t=1

While episodic memory is widely used in agent systems, its
internal structure is often treated as unstructured text. In
contrast, we explicitly formalize episodic memory at the
step level by mapping each interaction into a structured
tuple. Specifically, each pair (ot, at) is standardized as:

et = (ot, st, at, rt, gt)

where st denotes the agent state at time t, gt denotes the
subgoal associated with executing at, and rt denotes the
reward of the action with respect to gt.

The state st is derived from (st−1, at−1, ot) via LLM-based
information extraction. Both gt and rt are annotated by an
LLM conditioned on the task instruction and local interac-
tion context. Aggregating all standardized steps yields an
episodic memory sequence

Mepi = [et]
T
t=1

Implementation details of episodic standardization, includ-
ing the prompt template, are provided in Appendix C.1.
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Figure 3. The structuring module in PLUGMEM transforms heterogeneous memory into a formalized knowledge-dense memory graph.

Table 2. Mapping Memory Properties to Graph Architecture. We analyze long-term memory properties to derive our memory graph
design. The main rationale is aligning memory structure with the granularity at which knowledge is acquired, stored, and reasoned
over, reflected here as ensuring core nodes represent complete, self-contained, and verifiable knowledge blocks (Propositions/Prescrip-
tions), thus improving the efficiency and fidelity of downstream graph operations.

Memory Type Nature & Description Knowledge-Dense Unit Subgraph Structuring Logic

Semantic
Declarative & Static
Context-independent concepts,
facts, and world knowledge.

The Proposition (Fact Block)
A complete statement conveying
verifiable truth.

Concept-Centric Semantic Mem Structuring
Logic: Concepts acts as lightweight indices
pointing to heavy Proposition payloads.
Structure: Concept mentions←−−−−−− Proposition

Procedural
Executive & Goal-Oriented
Dynamic “how-to” knowledge
for problem solving.

The Prescription (Workflow Block)
A full action sequence to execute a
complex task.

Intent-Centric Procedural Mem Structuring
Logic: Intents (User Goals) serve as keys to
find holistic Solution blocks.

Structure: Intent solves←−−−− Prescription

Episodic
Autobiographical & Linear
Raw record of past interactions
and observations. Large volume.

The Source Trace (Event Window)
A trajectory segment for grounding and
verification.

Episodic Mem as the Anchor
Logic: Episodic acts as the “ground truth” layer
validating the abstract knowledge graphs.
Structure: Knowledge

proves←−−−− Source

3.1.2. EXTRACT KNOWLEDGE

We focus this section on the design of the knowledge ex-
traction and organization process. Implementation details,
including model choices, parameter settings, and prompt
configurations, are deferred to Appendix C.2.

Given standardized episodic memory Mepi, we induce two
complementary forms of long-term memory: semantic
memory and procedural memory. Both are extracted from
episodic experience and organized as structured memory
graphs with provenance.

Semantic Memory. The semantic memory module ex-
tracts and stores factual knowledge from episodic memory
to support later retrieval. Given an episodic unit et, the
module uses an LLM to extract a set of atomic propositions
that describe salient facts implied by the interaction. Each
proposition is accompanied by a set of associated concepts,
which serve as semantic tags for indexing. For example,
a proposition may be: “Tam Sventon, known in Swedish
as Ture Sventon, is a fictional private detective based in
Stockholm.” The associated concept set is {Tam Sventon,
fictional private detective, Stockholm}. To ensure extraction

quality, we apply several constraints during LLM extraction,
including coreference resolution, proposition deduplication,
and length control.

The extracted propositions and concepts are stored in a se-
mantic graph GS . Each proposition and concept is instanti-
ated as a node with a cached dense embedding. Two types of
edges are constructed: i) membership edges linking proposi-
tions to their associated concepts, and ii) provenance edges
linking propositions to their source episodic units in the
episodic graph GE . This design allows retrieved semantic
knowledge to be traced back to its originating experience.

Procedural Memory. The procedural memory module ex-
tracts reusable action strategies from episodic trajectories to
support future decision making. Given an episodic sequence
Mepi, the module first segments the trajectory into coherent
sub-trajectories by detecting boundaries where the similar-
ity between adjacent subgoals gt−1 and gt falls below a
predefined threshold. For each trajectory segment, the mod-
ule uses an LLM to induce a compact (intent, prescription)
pair. The intent represents the objective pursued within the
segment, while the prescription specifies an environment-
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Figure 4. PLUGMEM’s knowledge-centric memory graph design and the standard graph operations it supports.

agnostic action workflow that captures the key steps and
cause-effect patterns required for successful execution. An
example prescription is: “To identify the lowest price of
an item, search for the item using the search bar, sort the
results by price, and verify the minimum across variants.”
To enable quality-aware reuse, each induced prescription is
assigned a scalar return score. The score is obtained using
an LLM-based evaluator that assesses whether the intent is
achieved and how well the prescription is executed.

The extracted intents and prescriptions are stored in a pro-
cedural memory graph GP . Each intent and prescription
is instantiated as a node with a cached dense embedding.
Edges in GP encode two types of relations. First, hierarchi-
cal edges link each high-level intent node to its associated
low-level prescription nodes. Second, provenance edges
link prescription nodes to their originating episodic units in
the episodic graph GE , enabling procedural knowledge to
be traced back to concrete interaction experience.

3.2. Retrieval Module

This section describes the high-level retrieval process over
semantic and procedural memory graphs. Detailed prompt
templates, the step-by-step retrieval algorithm, and more
technical details are deferred to Appendix C.3.

In the structuring stage, PLUGMEM constructs three inter-
linked memory graphs: an episodic graph GE , a semantic
graph GS , and a procedural graph GP . Both GS and GP

maintain explicit provenance links to GE , enabling veri-
fiable grounding of retrieved knowledge and experience.
Figure 4 illustrates the overall memory organization.

Given a task description or query Q, an LLM-based re-
triever first determines which memory types to emphasize:
episodic, semantic, or procedural. Retrieval primarily op-
erates over GS and GP using an abstraction-specificity in-
terleaving strategy. When episodic memory is prioritized,

the same retrieval process (as will be introduced below) is
applied, but the system ultimately returns provenance-linked
episodic nodes in GE .

Retrieval begins by encoding Q into an embedding q and
scoring it against all low-level nodes (i.e., proposition or
prescription nodes) to initialize a candidate set C0. At hop
t, the retriever conditions on (Q,Ct) to generate an abstract
query qat . For GS , qat is represented as a set of concepts,
while for GP it is represented as a set of intents.

The abstract query qat is matched against high-level (i.e.,
concept or intent nodes) nodes, which act as routing signals
to activate adjacent low-level nodes that are added to Ct+1.
Only low-level nodes are retained as candidates, while high-
level nodes serve exclusively as intermediate traversal sig-
nals. When |Ct| exceeds a predefined budget (e.g., top-K),
candidates are re-ranked and pruned based on relevance and
importance. This multi-hop retrieval process iterates until
sufficient evidence is accumulated or a maximum hop limit
is reached.

3.3. Reasoning Module

The reasoning module is a test-time running module that
transforms retrieved memory into immediately actionable
guidance for the playing agent. In many cases, retrieved
memory may contain multiple overlapping or verbose de-
scriptions of past interactions that are individually relevant
but collectively redundant for the current decision. The
reasoning module leverages the LLM to aggregate and con-
dense such information into a compact, task-aligned repre-
sentation, distilling the shared signal across messages into
a single actionable summary. More technical details are
included in Appendix C.4.
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3.4. Summary and Supported Operations

As shown in Figure 3 and 4, starting from raw agent interac-
tions, PLUGMEM standardizes episodic memory, extracts
semantic and procedural knowledge, organizes them into
structured memory graphs, and enables retrieval and reason-
ing over stored experience to support downstream decision
making. At the system level, PLUGMEM supports a set
of basic memory graph operations, including: i) create,
which inserts newly observed episodic experience into struc-
tured memory, ii) retrieve, which retrieves relevant semantic,
procedural, or episodic memory given a task or query, iii)
update, which revises existing memory entries when new
evidence becomes available, and iv) delete, which removes
obsolete or low-utility memory.

The benchmark evaluations in the main paper primarily
evaluate the create and retrieve operations. Additional ex-
periments evaluating the effectiveness of the update and
delete operations are provided in Appendix C.5.

4. Experiments
4.1. Evaluation Framework

We evaluate PLUGMEM using standard benchmark-wise
metrics (e.g., accuracy, F1-score, success rate, etc.) to mea-
sure end-task performance. However, such metrics alone
are insufficient for evaluating agentic memory, as they fail
to capture the trade-off between decision-relevant utility
and agent-side cost. We therefore propose an information-
theoretic measure that quantifies the decision-relevant infor-
mation gain per memory token contributed by the memory
module. Specifically, for each decision instance with state
s and gold optimal action a∗, let the base agent’s prior be-
lief be Pbase(a

∗ | s) and the memory-augmented posterior
be Pmem(a

∗ | s,m) after consuming memory m. We de-
fine the Decision Information Gain as point-wise mutual
information (PMI):

PMI(a∗;m | s) = log2
Pmem(a

∗ | s,m)

Pbase(a∗ | s)
(1)

and normalize by memory length |m| (in tokens) to obtain
Memory Information Density (bits / token):

ρ(a∗,m) =
PMI(a∗;m | s)

|m|
(2)

Over a dataset, we report a global, amortized density via a
ratio-of-sums:

ρglobal =

∑
i PMI(a∗i ;mi | si)∑

i |mi|
(3)

Measured in bits per token, our metric is task-agnostic and
thus comparable across tasks. Cross-task variation in its

magnitude reflects a utility–cost trade-off: higher density
arises when memory yields larger decision-relevant gains or
does so with fewer tokens, while lower density occurs when
the base agent already solves the task well or when useful
memory must be expressed verbosely. Appendix D details
the complete analysis framework and additional components
beyond the main-text description.

4.2. Common Experimental Setup

We evaluate PLUGMEM unchanged across three hetero-
geneous benchmarks that stress different aspects of agen-
tic memory: i) LongMemEval (Wu et al., 2024) for long-
horizon conversational memory, ii) HotpotQA (Yang et al.,
2018) for multi-hop knowledge retrieval and reasoning, and
iii) WebArena (Zhou et al., 2024) for interactive web-based
decision-making.

Across all benchmarks, we adopt a unified memory eval-
uation protocol to ensure fair comparison. Unless other-
wise specified, we use NV-Embed-v2 (Lee et al., 2025) for
embedding-based retrieval. Retrieval is performed under a
fixed budget (e.g., top-K retrieval), which is held constant
across methods within each benchmark. For PLUGMEM,
the structuring and reasoning modules are instantiated using
Qwen2.5-32B/72B-Instruct (Qwen et al., 2025) and GPT-
4o (OpenAI, 2024), while all base agents are driven by the
same model unless explicitly stated. Decoding parameters
are fixed across methods to eliminate confounding effects.
For WebArena, we distinguish between online and offline
evaluation phases to assess knowledge transfer and reuse;
the detailed experimental design is described in Section 4.5.

Baselines are grouped into three categories: i) Vanilla,
which do not rely on external memory; ii) Task-agnostic,
which employ generic retrieval or agentic memory mecha-
nisms not tailored to the benchmark; and iii) Task-specific,
which incorporate benchmark-specific memory representa-
tions or retrieval heuristics.

Detailed benchmark-specific settings, prompt templates, and
benchmark-level analysis are provided in Appendix E.

4.3. RQ1: Does PLUGMEM Improve Performance and
Memory Efficiency Across Tasks?

Our first research question examines whether a single, task-
agnostic memory module can consistently improve agent
performance while reducing memory consumption across
heterogeneous tasks. Results on LongMemEval, HotpotQA,
and WebArena (Tables 3, 4, 5) show a consistent pattern
despite large differences in task structure and interaction
modality. First, PLUGMEM improves end-task performance
over both task-agnostic and task-specific baselines. Second,
these gains are achieved with substantially fewer memory
tokens injected into the agent context. Thus, PLUGMEM
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Figure 5. Utility–cost analysis across benchmarks. Each point represents a memory method, with the x-axis indicating agent-side
memory cost (in tokens) and the y-axis indicating decision-relevant utility (in bits). The slope of the line connecting a point to the origin
corresponds to information density (bit per token). Curves are obtained by sweeping the memory token budget on a randomly sampled
subset of benchmark tasks, illustrating how memory utility initially increases with budget, then saturates, and may eventually decline
as additional memory becomes counterproductive, for example by introducing noise or interference in decision-making. PLUGMEM
consistently achieves a more favorable utility–cost trade-off, dominating prior approaches by providing higher decision-relevant
utility under smaller memory budgets across benchmarks.

Table 3. Results on LongMemEval. #TokAvg. is the average length
of memory tokens. Experiments use NV-Embed-v2 (abbreviated
as NVE) as the embedding model for retrieval, and Qwen2.5-32B
(Q32) / Qwen2.5-72B (Q72) / gpt-4o (4o) as base LLMs for struc-
turing and reasoning. * denotes results taken from previous work.
† denotes methods evaluated on a subset of the full benchmark.
Best is bolded.

Method Emb LLM Acc. #TokAvg. Info. Density
Vanilla Baseline

No Context - Q72 14.8 - -
All Context - Q72 62.4 107K 4.2e-5

Task-Agnostic
Vanilla Retrieval NVE Q72 63.6 3742.52 1.2e-3

A-Mem† NVE 4o + Q72 61.0 4225.85 1.0e-3
Task-Specific

Zep* BGE-m3 4o 71.2 1600 -
LiCoMemory† NVE 4o + Q72 73.0 5914.85 9.3e-4

Ours
PLUGMEM NVE Q32 + Q72 75.1 362.58 1.6e-2

Note. More abbreviations: Llama3.3-70B (L70).

Table 4. Results on HotpotQA. EM means Exact Match. * denotes
results taken from previous work. We underline the upper bound
performance and bold the best.

Mem. Method Emb LLM EM F1 #TokAvg. Info. Density
Vanilla Baseline

No Context - Q32 22.1 31.0 - -
Gold Context - Q32 69.2 82.1 86.5 1.6e-1

Task-Agnostic
Vanilla Retrieval NVE Q32 51.7 62.7 659.2 1.2e-2

A-Mem NVE Q32 43.8 53.6 695.6 1.2e-2
Task-Specific

GraphRAG* NVE L70 55.2 68.6 - -
RAPTOR NVE Q32 56.7 69.7 806.3 1.1e-2
PropRAG NVE Q32 57.8 72.1 626.1 1.9e-2

HippoRAG2 NVE Q32 60.0 73.3 595.1 1.9e-2
Ours

PLUGMEM NVE Q32 61.4 74.1 81.6 1.4e-1

attains the highest information-gain density under the uni-
fied information-theoretic analysis introduced in Section 4.1.
This trade-off is further illustrated by the utility–cost visu-

Table 5. Results on WebArena. SR means Success Rate. Each
site-domain is split into (online/offline) sets. Shopping contains
(38/149) tasks, GitLab contains (37/143), and Multi-set contains
(10/38). * denotes results taken from previous work. AWM does
not natively support Multi-site tasks. Best SR is bolded.

SR % (on/off)

Method Emb Agent Shopping GitLab Multi-site #TokAvg. Info. Density
Vanilla Baseline

AgentOccam* - 4o 42.1/43.6 37.8/39.2 20.0/15.8 - -
Task-Agnostic

Van. Retrieval NVE Q32+4o 43.0 /42.3 40.5/41.3 10.0/18.4 8733 2.0e-6
A-Mem NVE Q32+4o 44.7/44.3 37.8/38.5 20.0/15.8 20516 3.4e-7

Task-Specific
AWM - 4o 26.3/28.2 27.0/27.3 - 696 -7.9e-4

Ours
PLUGMEM NVE Q32+4o 52.6/58.4 51.4/55.2 20.0/21.6 301 1.4e-3

alization in Figure 5, where PLUGMEM consistently shifts
toward higher utility and lower agent-side cost across all
three benchmarks.

The results indicate that PLUGMEM retrieves more decision-
relevant memory. By abstracting raw experience into com-
pact propositional and prescriptive knowledge, the memory
module provides higher utility per token, enabling the base
agent to reason more effectively under tight context budgets.

4.4. RQ2: What Is the Role of Each Component in
PLUGMEM?

We next analyze the contribution of each component in
PLUGMEM via ablations on all benchmarks (Tables 6, 7, 8).
Removing retrieval leads to the most severe performance
degradation across tasks, underscoring that memory is only
useful when relevant experience can be accessed at decision
time. However, this does not imply that retrieval alone drives
performance gains. Rather, retrieval determines whether
memory is operative at all, while its effectiveness is bounded
by how memory is represented. The structuring module
improves retrieval by organizing memory at appropriate
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Table 6. Ablation study on LongMemEval.

Method Emb LLM Acc. #TokAvg. Info. Density

PLUGMEM NVE Q32 + Q72 75.1 362.58 1.6e-2
No Structuring NVE Q32 + Q72 62.8 311.12 1.4e-2
No Retrieval - Q32 + Q72 57.2 591.2 6.8e-3

No Reasoning NVE Q32 72.4 9478.59 5.8e-4

Table 7. Ablation study on HotpotQA.

Method Emb LLM EM F1 #TokAvg. Info. Density

PLUGMEM NVE Q32 61.4 74.1 81.6 1.4e-1
No Structuring NVE Q32 51.4 62.0 116.7 6.8e-2
No Retrieval - Q32 20.0 24.3 8.01 -3.8e-1

No Reasoning NVE Q32 59.3 71.8 635.1 1.7e-2

1 In No Retrieval, we randomly sample corpus items to fit the reasoning module’s
context window. The sampled items are often irrelevant, so the reasoning module
outputs little to no distilled context, yielding a much smaller #TokAvg. (e.g., 8).

Table 8. Ablation Study on WebArena. No Human Demo means
no human demonstrations are inserted into the memory graph
between online and offline evaluation. We collect 23/18/5 demos
for Shopping/GitLab/Multi-site.

SR % (on/off)

Method Emb Agent Shopping GitLab Multi-site #TokAvg. Info. Density

PLUGMEM NVE Q32+4o 52.6/58.4 51.4/55.2 20.0/21.6 301 1.4e-3
No Structuring NVE Q32+4o 50.0/51.7 41.7/42.0 20.0/18.4 243 7.2e-4
No Retrieval NVE Q32+4o 42.1/46.3 45.8/44.0 20.0/15.8 286 3.8e-4

No Reasoning NVE Q32+4o 52.6/53.7 41.7/43.4 20.0/18.4 374 5.6e-4
No Human Demo NVE Q32+4o 52.6 /52.3 51.4 /51.0 20.0 /18.4 261 1.2e-3

abstraction levels, allowing the retriever to more effectively
identify and access task-relevant knowledge. The reasoning
module plays a complementary role, primarily affecting
memory efficiency by controlling how retrieved knowledge
is compressed and consumed.

Overall, retrieval determines whether memory helps, struc-
turing determines what can be retrieved, and reasoning de-
termines how efficiently retrieved memory can be used. Re-
trieval thus constitutes the defining bottleneck, while struc-
turing and reasoning modulate effectiveness and efficiency
once retrieval is in place.

4.5. RQ3: Knowledge Transfer and Memory Reuse

Our third research question evaluates whether agent memory
can support transferable knowledge that generalizes across
task instantiations and environments. To this end, we design
a specialized evaluation protocol on WebArena.

We focus on the Shopping, GitLab, and Multi-site sub-
sets. Shopping and GitLab are procedure-heavy domains
with large task volumes and relatively low baseline success
rates (Yang et al., 2025b), avoiding saturation effects. The
Multi-site subset further requires compositional skills across
multiple websites, making it particularly challenging and
well-suited for evaluating cross-task knowledge reuse.

To explicitly test memory evolution and reuse, we split tasks
into an online set and an offline set based on WebArena’s
intent templates. For each template, one instantiation is

assigned to the online set, while the remaining instantiations
form the offline set. The agent is first evaluated on the online
set, during which PLUGMEM is allowed to insert and re-
trieve memory. We then augment the memory module with a
small number of high-quality human demonstrations, repre-
senting external sources of procedural knowledge analogous
to tutorials or experience sharing. Finally, we evaluate on
the offline set, where memory insertion is largely disabled
and only retrieval is allowed. This protocol evaluates mem-
ory as reusable knowledge rather than episodic recall. The
agent evaluated on the offline set can be viewed as a new
agent that inherits a pre-built memory graph, testing whether
accumulated procedural and semantic knowledge can miti-
gate cold-start issues. Additional experimental details and
implementation specifics are provided in Appendix E.3.

As shown in Table 5, PLUGMEM significantly improves suc-
cess rates on the offline set across domains, with strong gains
on the Multi-site tasks. These results demonstrate effective
reuse of accumulated procedural and semantic knowledge,
mitigating cold-start issues and supporting compositional
generalization.

4.6. Discussion: Why Can a Task-Agnostic Memory
Outperform Task-Specific Designs?

A natural question is why a task-agnostic memory module
can outperform systems tailored to individual benchmarks.
Our results suggest that the key difference lies not in reject-
ing task-specific heuristics, but in prioritizing what funda-
mentally makes agentic memory effective. Task-specific
designs often encode benchmark-specific insights through
customized memory units or transformations, implicitly as-
suming that relevant memory will be available when needed.
While effective within their scope, such approaches conflate
memory transformation with memory utility. In contrast,
our findings highlight that agentic memory is fundamen-
tally retrieval-driven. Without effective retrieval, neither
task-specific abstractions nor carefully engineered memory
representations translate into performance gains, as consis-
tently shown in our ablations. At the same time, retrieval
alone is insufficient. Its effectiveness is bounded by how
memory is structured, since structuring determines which
aspects of experience can be indexed and recovered. Our
knowledge-centric structuring enables retrieval over seman-
tically meaningful and decision-relevant abstractions, allow-
ing useful information to surface at decision time.

Importantly, PLUGMEM is designed as a task-agnostic mem-
ory backbone that targets the shared retrieval and repre-
sentation challenges underlying agentic memory designs.
From this perspective, task-specific memory approaches and
heuristics can be naturally layered on top of PLUGMEM,
rather than viewed as alternatives to it. Our framework there-
fore provides a common foundation on which task-specific
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adaptations can be applied to further improve performance.
We empirically validate this view through additional task-
adaptation experiments, where representative task-specific
heuristics and memory transformation strategies from prior
baselines are integrated into PLUGMEM. These adaptations
consistently lead to further performance improvements be-
yond using PLUGMEM alone, indicating that task-specific
techniques and our task-agnostic memory design are com-
plementary. Detailed experimental setups and results are
provided in Appendix F.

5. Conclusions
We presented PLUGMEM, a task-agnostic plugin memory
module that organizes agent experience into knowledge-
centric representations to enable effective retrieval of
decision-relevant memory across diverse agentic tasks.
Through extensive experiments, we demonstrate that PLUG-
MEM consistently improves end-task performance while re-
ducing agent-side memory cost under a unified utility–cost
evaluation framework. Beyond standalone usage, PLUG-
MEM serves as a general memory backbone that can be aug-
mented with task-specific heuristics, with task-adaptation
experiments showing further gains. Overall, these results po-
sition PLUGMEM as principled foundation for transferable
and efficient memory in LLM agents, pointing toward more
general and extensible memory systems for long-horizon
decision-making.
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A. Real Benchmark Cases Illustrating Why PLUGMEM Outperforms Task-Agnostic and
Task-Specific Baselines

A.1. LongMemEval

Case Study: Hierrachical Retrieval for Episodic Memory. Table 9 show an examples of PLUGMEM retrieving episodic
memory hierrachically on LongMemEval.

Table 9. Example 1 of retrieval trace showing hierarchical retrieval for episodic memory.

LongMemEval Case Study: Hierarchical Retrieval

Query. ”How many weddings have I attended in this year?”

Semantic Memory Retrieved

▷ Semantic Memory 669 : User’s sister’s wedding was amazing, and User had a great time planning it with her, including choosing
the dress and deciding on the menu.
▷ Semantic Memory 141 : User is planning a wedding and dreams of having a small, outdoor ceremony at a beach or in a park.
User recently attended their college roommate’s wedding in the city which had a rooftop garden ceremony overlooking the skyline.
▷ Semantic Memory 146 : Social media platforms like Instagram and Pinterest can be used to follow wedding planners, venues, and
photographers. Reading reviews on Yelp or Google provides insights into the venue’s reputation.
...

Episodic Memory Retrieved

▷ Episodic Memory Session 24 : Date: 2023/10/15 (Sun) 04:44 User: I’m planning my own wedding and I was wondering if you
could give me some tips on how to choose the perfect venue. By the way, I just got back from a friend’s wedding last weekend, and it
was amazing - the bride, Jen, looked stunning in her bohemian-inspired dress, and her husband, Tom, was clearly smitten with her. It
was at a rustic barn in the countryside, and it was so cozy and relaxed...
▷ Episodic Memory Session 6 : Date: 2023/10/15 (Sun) 10:57 User: I’m planning my own wedding and I need some help with
finding a venue. I’ve always dreamed of having a small, outdoor ceremony, maybe at a beach or in a park. Do you have any
recommendations or resources for finding the perfect spot? By the way, I just got back from my college roommate’s wedding in the
city, and it was beautiful - they had a rooftop garden ceremony overlooking the skyline, and it was so romantic. My friend Emily
finally got to tie the knot with her partner Sarah, and it was amazing to see them so happy after waiting for marriage equality...
...

Reasoning

▷ To determine how many weddings you have attended this year, let’s review the information from the relevant memories provided:
1. Cousin’s Wedding at a Vineyard (August): You mentioned attending your cousin Rachel’s wedding at a vineyard in August.
2. College Roommate’s Wedding in the City: You mentioned attending your college roommate’s wedding, which had a rooftop garden
ceremony.
3. Friend Jen’s Wedding at a Rustic Barn: You mentioned attending your friend Jen’s wedding at a rustic barn in the countryside
last weekend...

Answer. ”Therefore, you have attended 3 weddings this year.”.

Takeaways The example highlights a key reason why PLUGMEM outperforms task-agnostic baselines on LongMemEval.
Unlike Zep (Rasmussen et al., 2025), which contains episode nodes in its graph but only performs retrieval at the semantic
level (semantic entities and facts), and LiCoMemory (Huang et al., 2026), which performs graph retrieval for original
dialogue chunks solely based on entities, PLUGMEM retrieves episodic memories by leveraging semantic memory extracted
from those episodic memories. Specifically, the retrieval module first identifies semantic memories relevant to the query. In
the example, semantic memory 669, semantic memroy 141, and semantic memory 146 are all related to wedding, which is
the topic of the question. It then locates the source episodic memory corresponding to each retrieved semantic memory and
selects those containing a sufficient number of semantic memories retrieved. In the example, semantic memory 669 and
some other retrieved memories are extracted from episodic memory session 24, so episodic memory session 24 is selected.
So does episodic memory session 6. We can notice that, although question-related, semantic memory 141 and 146 do give
sufficient information about which wedding they are describing, making them ambiguous when counting the number. But by
tracing back to its source episodic memory, PLUGMEM successfully distinguishes them, showing the importance of episodic
memory which is neglected in Zep. Also, although LiCoMemory retrieves back origin dialogue chunks, the retrieval process
is based on semantic entities. Due to the fact that episodic memory related a single entity is definitely more than episodic
memory related to a specific piece of semantic memory, it is less efficiency and may bring more noise.
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A.2. HotpotQA

Case Study: Bridge-Entity Multi-hop Retrieval. Table 10 and Table 11 show two examples of multi-hop retrieval on
HotpotQA alternating abstract node like concept and specific node like semantic node.

Table 10. Example 1 of retrieval trace showing bridge-entity discovery and evidence compression.

HotpotQA Case Study 1: Bridge-Entity Multi-hop Retrieval

Query. “ ‘One Less Set of Footsteps’ is a song written and performed by a singer born in which year? ”

Hop 0 (init). Tags for query: [One Less Set of Footsteps, songwriter, performer, birthdate]
▷ node 5891 : “One Less Set of Footsteps” is a song written and performed by Jim Croce. It was released in 1973 as the first single
from his album “Life and Times”. (bridge entity identified: Jim Croce)
▷ node 5892 : ”One Less Set of Footsteps” reached a peak of #37 on the ”Billboard” Hot 100, spending ten weeks on the chart.
......
▷ node 15424: Mariah Carey, born on March 27, 1969 or 1970, is an American singer, songwriter, record producer, and actress.

Query new = Integrated ( Query, top-k nodes)

Hop 1 (refine & expand). Tags for query: [Jim Croce, birth year]
▷ node 5897 : James Joseph “Jim” Croce was born on January 10, 1943, and died on September 20, 1973. (golden fact retrieved:
Jan 10, 1943)
node 5895 : James Joseph ”Jim” Croce was an American folk and rock singer active between 1966 and 1973. He released five studio
albums and singles during this period.
......
node 5883 : ”It Doesn’t Have to Be That Way” was originally released early in 1973 as the B-side of the ”One Less Set of Footsteps”
single and was reissued in December of the same year as the third and final single from the album ”Life and Times”.

Reasoning (compressed).
▷ “One Less Set of Footsteps” is written and performed by Jim Croce.
▷ Jim Croce was born on January 10, 1943.

Answer. 1943.

Table 11. Example 2 of retrieval trace showing bridge-entity discovery and evidence compression.

HotpotQA Case Study 2: Bridge-Entity Multi-hop Retrieval

Query. “Bill Nelson flew as a Payload Specialist on a Space Shuttle launched for the first time in what year?”

Hop 0 (init). Tags for query: [Bill Nelson, Payload Specialist, Space Shuttle, first launch]
▷ node 1375 (v=0.501): In January 1986, Clarence William Nelson II became the first sitting member of the United States House
of Representatives to fly in space, serving as a Payload Specialist on the Space Shuttle Columbia. (bridge entity identified: Space
Shuttle Columbia)
▷ node 1371: In 1983, Byron Kurt Lichtenberg and Ulf Merbold became the first Payload Specialists to fly on the shuttle.
......
▷ node 1383: Dirk Dries David Damiaan, Viscount Frimout, flew aboard NASA Space Shuttle mission STS-45 as a payload specialist,
making him the first Belgian in space.

Query new = Integrated (Query, top-k nodes)

Hop 1 (refine & expand). Tags for query: [Space Shuttle Columbia, first launch]
▷ node 1365: Space Shuttle “Columbia” (Orbiter Vehicle Designation: OV-102) launched for the first time on mission STS-1 on April
12, 1981, marking the first flight of the Space Shuttle program. (golden fact retrieved: 1981)
▷ node 1380: STS-61-C’s seven-person crew included . . . and Representative Bill Nelson (D-FL), the second sitting politician to fly
in space.
......
▷ node 1384: A payload specialist (PS) is an individual selected and trained . . . for a NASA Space Shuttle mission.

Reasoning (compressed).
▷ Bill Nelson (Clarence William Nelson II) served as a Payload Specialist on the Space Shuttle Columbia.
▷ Space Shuttle Columbia first launched on April 12, 1981 (STS-1).

Answer. 1981.
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Takeaways. Across both case studies, PLUGMEM succeeds by explicitly separating what to retrieve next from where the
evidence resides. In Hop0, the retriever typically surfaces a small set of low-level propositions that are semantically close
to the question but may only partially resolve it. Crucially, rather than repeatedly expanding within a local neighborhood
around these propositions (as in many graph-based retrievers that rely on 1–2 hop adjacency), PLUGMEM elevates the
intermediate result into an abstract routing signal, a bridge concept (e.g., Jim Croce) or a bridge entity/context (e.g., Space
Shuttle Columbia). This abstraction step turns multi-hop QA into a sequence of targeted sub-queries: first identify the
missing bridge, then retrieve the specific fact needed to answer.

Technically, this behavior is enabled by the bipartite organization of our memory graphs, where high-level nodes (con-
cepts/intents) connect to many low-level nodes (propositions/prescriptions). Routing through the abstract layer allows the
retriever to “jump” beyond the narrow vicinity of an initial seed proposition and activate a much broader set of candidate
evidence, which is especially important on HotpotQA where supporting facts often lie in different articles or distant parts of
the corpus. In both examples, the first hop retrieves a bridge-bearing statement; the next hop uses the bridge to directly
access the answer-bearing statement (birth year or first-launch year), while irrelevant but superficially related candidates
(e.g., other payload specialists, other singer-songwriters) are naturally deprioritized once the bridge entity is fixed.

Finally, the reasoning module plays a complementary role by compressing the retrieved pool into a minimal sufficient
evidence set (typically two propositions in these examples), which improves robustness and token efficiency. Overall,
PLUGMEM’s abstraction-to-specificity routing and budgeted candidate control expand the reachable search space and
deepen evidence chaining, without being constrained to short range neighbor expansion from an arbitrary starting node.

A.3. WebArena

Case Study: PLUGMEM Dynamically Construct Useful Guidance for Agent through Retrieval and Reasoning This
WebArena case study demonstrates that the advantage of PLUGMEM lies not in executing a particular workflow correctly,
but in how guidance is constructed, adapted, and consumed during decision-making. As shown in Table 12, PLUGMEM
enables the agent to solve the task without relying on static workflows or verbose episodic recall, instead producing compact,
step-adaptive guidance that directly reflects the agent’s current informational bottleneck.
Compared to task-agnostic retrieval-based methods, the core limitation exposed by this task is not retrieval coverage but
retrieval granularity. Flat retrieval systems can surface past trajectories or similar task descriptions, but these memories are
typically either too specific (tied to particular pages or layouts) or too verbose to be directly actionable. As a result, the
agent must internally interpret and reconcile large amounts of loosely relevant information, leading to context explosion
and brittle decision making. In contrast, PLUGMEM retrieves procedural knowledge units—such as category navigation,
constraint-based filtering, and ranking under partial observability—and further compresses them through its reasoning
module into concise, decision-aligned instructions. The benefit is not simply fewer tokens, but a sharper alignment between
retrieved memory and the agent’s immediate control decision.
On the other end of the spectrum, task-specific web agents such as AWM and SteP hard-code or accumulate a single
canonical workflow per domain. While effective when tasks closely match the assumed structure, such workflows lack the
ability to adapt their internal logic as the task unfolds. This case highlights that web navigation tasks are not monolithic:
the agent alternates between qualitatively different reasoning regimes (e.g., locating the correct semantic scope, enforcing
numeric constraints, and resolving ties under incomplete information). A static workflow cannot anticipate these shifts.
Although AWM updates its workflow after task completion, it does not revise guidance within a task or condition it on
intermediate observations. PLUGMEM, by contrast, recomputes guidance at each step, allowing the agent’s strategy to
evolve as the environment reveals new structure.
More broadly, this example illustrates that PLUGMEM ’s advantage comes from treating knowledge as the unit of memory
access, rather than raw trajectories or fixed workflows. Task-agnostic methods fail because they retrieve too much
unstructured experience; task-specific methods fail because they retrieve too little adaptability. PLUGMEM occupies a
middle ground: it abstracts experience into reusable procedural knowledge while retaining the ability to contextualize and
re-specialize that knowledge through reasoning. This combination allows PLUGMEM to generalize across WebArena tasks
while still producing highly targeted, step-specific guidance, which neither task-agnostic nor task-specific designs can
reliably achieve.

15



PlugMem: A Task-Agnostic Plugin Memory Module for LLM Agents

Table 12. Example 1 of PLUGMEM assisting WebArena agent.

WebArena Case Study: Adaptive Retrieval and Refined Guidance

Query. “ Buy the highest rated product from the meat substitute category within a budget between 100 and 200. ”

PLUGMEM Reasoning.
▷ Reasoning:
The user’s goal is to buy the highest-rated product from the ”meat substitute” category within a budget of 100 to 200. The current
observation does not provide direct access to the ”meat substitute” category or relevant products. Additionally, the visible products on
the page do not appear to belong to the ”meat substitute” category. To efficiently locate the desired product, the agent should use the
dropdown menu to navigate to the ”meat substitute” category and then apply a price filter to narrow down the options to the specified
budget range. If the platform supports advanced search, it can also be used to filter by category and price range.
▷ Final Information:
1. Use the dropdown menu to navigate to the ”Grocery & Gourmet Food” category, then locate the ”meat substitute” subcategory.
2. Once in the ”meat substitute” category, apply a price filter to display products within the 100 to 200 range.
3. Sort the results by rating to identify the highest-rated product within the budget.
4. If the platform supports advanced search, use it to filter by category (”meat substitute”) and price range (100 to 200) to streamline
the process.
5. Once the highest-rated product is identified, proceed to add it to the cart.

AgentOccam Action 1: hover [1490]. (agent operates the dropdown menu)

...

PLUGMEM Reasoning.
▷ Reasoning
The user’s goal is to buy the highest-rated product from the ”Meat Substitutes” category within a budget of 100 to 200. The current
page lists various products in this category, but the budget constraint narrows the options to only those priced between 100 and 200.
To efficiently identify the highest-rated product within this range, the agent should apply the price filter for 100-199.99 and then sort
the results by rating. This ensures that only relevant products are considered, and the highest-rated one is selected.
▷ Final Information
1. Apply the price filter for the range 100.00 - 199.99 by clicking the corresponding link under the ”Price” section.
2. Once the filtered results are displayed, sort the products by ”Rating” to identify the highest-rated product.
3. Select the highest-rated product from the filtered list and click ”Add to Cart.”
4. Confirm that the product meets the budget and rating criteria before proceeding.

AgentOccam Action 3: click [6093]. (agent selects the price range)

PLUGMEM Reasoning.
▷ Reasoning
The user’s goal is to buy the highest-rated product from the ”Meat Substitutes” category within a budget of 100 to 200. The current
page already displays products filtered by the specified price range. The next step is to identify the product with the highest rating
among the listed options and add it to the cart. The observation provides details about the products, including their names, prices, and
ratings, which are essential for making the selection.
▷ Final Information
1. Review the listed products on the current page and identify the one with the highest rating. Based on the observation:
- ”Beyond Meat Beef Beefy Crumble, 5 Pound – 2 per case” has a rating of 50 and costs 108.27.
- Other products do not have visible ratings in the observation.
2. Since ”Beyond Meat Beef Beefy Crumble” has the highest rating and falls within the budget, proceed to click the ”Add to Cart”
button for this product.
3. Confirm that the product has been successfully added to the cart before proceeding further.

AgentOccam Action 4: click [10183]. (agent inspects the item information)

...

B. Related Work
B.1. Cognitive Science Based Agent Memory

Cognitive science has long studied the mechanisms of human memory, providing valuable insights into how memory can be
leveraged in agents. The Atkinson–Shiffrin memory model defines long-term memory as information that can be retained
and recalled over extended periods of time (Atkinson & Shiffrin, 1968). Long-term memory is further categorized into three
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major types (Tulving, 1972; Squire, 2004): semantic memory, which stores concepts and factual knowledge; procedural
memory, which is responsible for knowing how to perform actions and skills; and episodic memory, which represents raw
records of personal experiences and events. For intelligent agents, most interactions with the environment are episodic
memory, such as raw contexts and working trajectories. From these episodic experiences, agents can extract more reusable
representations. For example, user preferences can be distilled as semantic memory (Li et al., 2025), while web navigation
skills can be abstracted as procedural memory (Wang et al., 2024b). In this sense, semantic and procedural memories are
not isolated components, but rather structured abstractions derived from episodic memory. Knowledge can be viewed as
a further abstraction over memory. Specifically, propositional knowledge corresponds to highly structured and verifiable
abstractions of semantic memory, while prescriptive knowledge represents generalized and reusable forms of procedural
memory that describe how to accomplish goal-oriented tasks (Diebolt & Perrin, 2013).

Inspired by these cognitive theories, many studies have explored memory mechanisms for intelligent agents. Episodic
and semantic memory have been introduced to handle long-context information, such as long documents in document
understanding agents (Lee et al., 2024) and long-term user–agent interactions in conversational agents (Li et al., 2025).
Additionally, some approaches construct knowledge graphs containing both episodic and semantic subgraphs to better
organize and manage agent memory (Anokhin et al., 2024; Rasmussen et al., 2025). Procedural memory has also been
incorporated into decision-making agents, particularly web agents, where accumulated experiences are leveraged to improve
future strategies (Zhao et al., 2024). This line of research moves toward self-evolving agents that continuously refine their
decision-making policies based on incoming memory (Wang et al., 2024b; Fang et al., 2025; Ouyang et al., 2025).

However, most existing methods are designed for specific tasks and are unable to effectively support all memory types
simultaneously. In contrast, PLUGMEM standardizes heterogeneous episodic memories across diverse tasks and stores
extracted knowledge in a propositional–prescriptive dual knowledge graph, thereby overcoming the limitations of task
generalizability present in prior approaches.

B.2. Memory Module Designs

Across agentic systems, external memory is most commonly realized through retrieval. Agents store past interactions,
observations, or documents outside the model context and retrieve relevant information at inference time to condition
decision making. This retrieval first paradigm forms the basic prototype of external memory, and nearly all subsequent
memory designs can be viewed as extensions built on top of it.

Early task agnostic memory systems adopt flat retrieval over unstructured episodic memory. Vanilla retrieval and vanilla
RAG store raw interaction histories or documents as text and retrieve relevant segments based on similarity to the current
query (Lewis et al., 2021; Wang et al., 2024a). These methods provide a simple and broadly applicable memory interface,
but the retrieved content remains tightly bound to specific episodes. As a result, retrieved memories often contain redundant
details and exhibit low information density when reused across different decision contexts.

To improve retrieval effectiveness, later work introduces structure on top of episodic memory. Graph based and hierarchical
retrieval systems organize stored content to support multi hop retrieval, aggregation, or global reasoning (Edge et al., 2025;
Sarthi et al., 2024). Related approaches further refine retrieval by altering the internal organization of memory graphs, such
as ranking paths or linking propositions (Gutiérrez et al., 2025; Wang & Han, 2025). While these methods differ in structure
and traversal strategy, they largely preserve the same retrieval oriented abstraction. Memory remains organized around
episodic traces, entities, or text spans, and structural mechanisms primarily serve to improve access to stored experiences
rather than to transform their content.

In parallel, task-specific memory systems explore more aggressive forms of memory processing. Temporal knowledge
graphs for conversational agents, workflow memories for web navigation, and reasoning oriented memory banks explicitly
extract higher level representations from experience (Gutiérrez et al., 2025; Wang et al., 2024b; Ouyang et al., 2025). These
systems demonstrate that abstracting experience into reusable representations can substantially improve performance within
a fixed task setting. However, the abstraction process is typically guided by task-specific assumptions, which constrains
reuse of the memory module across heterogeneous agents and environments.

Viewed together, prior work reveals a key distinction in how memory is treated. Some systems focus on improving retrieval
over episodic experience, while others implicitly or explicitly transform experience into more abstract forms. Only the
latter enables memory to generalize across episodes and tasks, since episodic memory is inherently tied to a particular agent
and interaction trajectory, whereas semantic and procedural knowledge abstract away task-specific execution details. This
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observation motivates memory to knowledge transformation as a critical operation for reusable agent memory.

PLUGMEM builds on this evolution by making memory-to-knowledge transformation an explicit and central component
of the memory module. Instead of treating episodic traces as the primary unit of retrieval, PLUGMEM organizes memory
around propositional and prescriptive knowledge units corresponding to semantic and procedural memory. These knowledge
units serve as the basis for memory organization, retrieval, and reasoning, while episodic memory is retained as verifiable
source evidence. By elevating knowledge to the unit of memory manipulation, PLUGMEM enables memory to be reused
across agents and tasks without task-specific redesign, while remaining compatible with the retrieval based external memory
paradigm.

B.3. Memory Benchmarks and Evaluation Scope

A broad range of benchmarks have been used to study memory related behaviors in language models and agents, spanning
diverse task settings and evaluation objectives. One prominent line of work focuses on long context utilization, evaluating
whether models can access and reason over large inputs within a single inference window, such as long document
understanding, narrative comprehension, or needle in a haystack style retrieval (Liu et al., 2023; Bai et al., 2024; Zhang et al.,
2024). These benchmarks assess context usage and attention behavior, but do not model memory accumulation, update,
or reuse across time. A separate line of work focuses on long-horizon conversational agents and user-centric memory,
evaluating whether systems can accumulate, maintain, and reuse information such as preferences, personal attributes, and
dialogue context over extended interactions (Wu et al., 2024; Maharana et al., 2024). These benchmarks explicitly stress
episodic accumulation and robustness to redundancy and noise, and are commonly used to study memory abstraction in
interactive settings. Another class of benchmarks evaluates retrieval-augmented question answering over static knowledge
sources, including factoid and multi-hop QA tasks, where memory is treated as a fixed external repository and the primary
challenge lies in retrieval and evidence composition rather than memory evolution (Petroni et al., 2021; Kwiatkowski
et al., 2019; Yang et al., 2018; Trivedi et al., 2022). While effective for studying semantic retrieval and composition, these
benchmarks assume a static memory base and do not capture how memory is constructed or refined through interaction. In
agentic settings, additional benchmarks evaluate end-to-end task performance in interactive environments, including web
navigation, tool use, and embodied reasoning, where memory interacts with planning, perception, and action execution (Zhou
et al., 2024; Trivedi et al., 2024; Furuta et al., 2024; Shridhar et al., 2021; Liu et al., 2025). In such benchmarks, memory is
often entangled with other agent capabilities, making it difficult to isolate memory-specific contributions.

While these benchmarks differ widely in surface form, they each probe only a limited slice of memory behavior. Collectively,
prior work reveals a fragmented evaluation landscape, where no single benchmark provides comprehensive coverage of how
memory is accumulated, abstracted, organized, and reused in agent decision-making.

Within this landscape, memory benchmarks can be distinguished by how memory is constructed, organized, and reused.
Some benchmarks emphasize long term accumulation of episodic experience, requiring agents to extract stable information
from extended interaction histories. Others focus on structured access to semantic knowledge, stressing multi-hop retrieval
and organization over memory. A third class emphasizes procedural reuse, where agents must generalize skills or workflows
acquired from prior experience to new task instances. No single benchmark captures all of these aspects simultaneously,
motivating the need for a complementary evaluation suite.

Based on this perspective, we intentionally select three benchmarks that probe distinct and complementary memory
behaviors. LongMemEval targets long-horizon conversational settings where memory is accumulated over time and relevant
information must be abstracted from noisy episodic interactions (Wu et al., 2024). HotpotQA evaluates semantic memory
organization and multi-hop retrieval over a large static knowledge source, serving as a canonical benchmark for structured
memory access and composition (Yang et al., 2018). WebArena evaluates procedural memory in interactive environments,
where agents must reuse and adapt previously acquired strategies across multiple task instances derived from shared intent
templates (Zhou et al., 2024).

Beyond their complementary coverage of episodic accumulation, semantic organization, and procedural reuse, the selected
benchmarks are representative within their respective evaluation settings. LongMemEval, HotpotQA, and WebArena have
each been widely adopted in prior work, with a broad range of memory and agent baselines already evaluated on these
benchmarks. This established usage allows existing systems to be reliably reproduced and compared under consistent
protocols, reducing evaluation bias introduced by task-specific tuning. As a result, evaluating memory modules on these
benchmarks enables fairer and more stable comparison across heterogeneous memory designs, while supporting conclusions
that generalize beyond any single task or interaction pattern.
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C. Implementation Details
Table 13. Layered Memory System Construction via Standardized Formalization. PLUGMEM adopts a layered memory graph: raw
interactions (τ ) are first formalized into episodic memory (Phase 1). This formalized history then serves as the input for inducing semantic
and procedural knowledge blocks (Phase 2). All memory types are managed through a universal API by standard data operations.

Memory Type Construction Logic (Input→ Output) Graph Structure Universal API & Cognitive Heuristics

Phase 1: Standardize 1. Create (Ingestion & Induction)
• memory.create(trajectory)
• Formalizes raw τ into standardized Episodic, and
then triggers induction to abstract Facts/Skills from
new Episodic entities.

2. Retrieve (Association)
• memory.retrieve(goal, state)
•Maps Goal and State to Intent/Concept indices
and retrieve Knowledge Blocks, then traces back to
Episodic Sources for context.

3. Update (Reflection & Refinement)
• memory.update(feedback)
• Detect and mitigate contradictions (Semantic) or
optimize workflow efficiency (Procedural).

4. Delete (Forgetting & Pruning)
• memory.delete(criteria)
• Decays low-utility Nodes (Semantic/Procedural)
while compressing old Episodic Nodes to save space.

Episodic

Formalization
Input: Raw Agent Trajectory (τ )
Process: Formalize(τ)→Mepi

Role: Converts unstructured logs into
standardized Source Nodes.

Source Node (Event Window)
Edge: Knowledge

proves←−−−− Source

Phase 2: Structure

Semantic

Fact Induction
Input: Episodic Memory (Mepi)
Process: Inducefact(Mepi)→Msem

Role: Distills static truths from
specific event traces.

Proposition Node (Fact Block)
Concept Node (Entity/Term)
Edge: Concept mentions←−−−−−− Proposition

Procedural

Skill Induction
Input: Episodic Memory (Mepi)
Process: Induceskill(Mepi)→Mproc

Role: Synthesizes reusable workflows
from successful history.

Prescription Node (Workflow Block)
Intent Node (User Goal/Task)
Edge: Intent solves←−−−− Prescription

Overview. This appendix provides implementation-oriented details that complement the high-level description in Sec-
tion 3.1. As summarized in Table 13, the memory structuring module includes two main phases: Phase 1 “Standardize”
and Phase 2 “Structure.” In Phase 1, to handle different types of episodic memory, PLUGMEM standardize the raw agent
trajectory τ into uniformed episodic memory Mepi. Specifically, for each turns of observation and action {ot, at}, we
prompt LLM to derive the state st, the subgoal gt and the reward rt. In Phase 2, PLUGMEM employs induction processes to
distill this episodic memory Mepi into Semantic Memory and Procedural Memory. These memory are the inserted into the
memory graph, with a series of universal API that manage them.

C.1. Episodic Standardization

To standardize episodic memory at time t, we represent each turns of the raw agent trajectory as an observation-action pair
{ot, at} and formalize it through a three-stage process:
We first derive the agent state st using the previous state st−1, the previous action at−1, the current observation ot, and the
initial goal G. Incorporating G ensures the state remains grounded in the agent’s initial objective. The derivation is achieved
by querying an LLM with the prompt in Listing 1. The resulting state serves as a concise context summary, effectively
reducing overall context length for distilling procedural memory when pursuing long-context agentic tasks (Wu et al., 2024;
Zhou et al., 2024).
Next, we infer a subgoal gt from st, ot, at and G to analyze how the agent decomposes the global task into incremental
steps. Using the prompt in Listing 2, this step serves two purposes: it enriches the information available for knowledge
extraction and enables trajectory segmentation. Specifically, we can structure the raw trajectory into workflow by chunking
episodic memory based on the cosine similarity of adjacent subgoal embeddings.
Finally, we determine the reward rt based on st, at, gt and ot+1 using the prompt in Listing 4. This reward quantifies the
effectiveness of the action in achieving its intended goal, facilitating the extraction of quality-aware procedural memory.

Listing 1. Template for deriving the current state st given previous state st−1, previous action at−1, and current observation ot.

============================================================
Prompt Get_State
============================================================

You will receive four pieces of information:
Goal: The agent’s current objective or task.
Previous State (at time t): A natural language summary describing the agent’s context,

history, and partial progress so far.
Action (at time t): The action the agent decided to take next, expressed in natural

language.
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Observation (at time t+1): The outcome or feedback resulting from that action.

Your task is to derive the new updated state---a coherent natural language summary that
integrates all relevant information from the previous state, the action, and the

new observation.

Steps to Follow:
Interpret the Inputs:
Examine the goal, the previous state, the action, and the observation to understand

what has changed in the agent’s situation and the detailed information about
location and time.

Reason about the Update:
Describe the logical process by which the new state should differ from the previous one

. Identify what progress has been made, what new information was gained, and how
the context or focus may have shifted.

Generate the Updated State:
Write a clear and concise natural-language description summarizing the new state of the

agent at time t+1. The new state should:
-- Include all the detailed information in the action and observation, especially

information about location and time.
-- Integrate the outcome of the latest action and observation.

Output Format:
### Reasoning
(Explain step by step how the new state should be updated based on the inputs.)

### State
(Provide the final updated state summary here.)

---
Input:
Goal: {goal}
Previous State (at time t): {state}
Action (at time t): {action}
Observation (at time t+1): {observation}

Listing 2. Template for deriving the subgoal gt of turn t given initiate goal G, current state st, observation ot and action at, as well as
next observation ot+1.

============================================================
Prompt Get_Subgoal
============================================================

At time t, the agent takes an action based on its state, observation, and overall goal.
Your task is to infer the subgoal-the immediate or intermediate objective-that

best explains why the agent chose this action.

Use the following information as context: Overall Goal: {goal} Current State (summary
of past context): {state} Current Observation: {observation} Action at time t: {
action}

Step 1: Reasoning Analyze how the current state and observation relate to the overall
goal. Explain how the given action helps the agent make progress toward that goal-
possibly by achieving a smaller intermediate objective. Be explicit and causal:
describe why this action makes sense given the context.

Step 2: Subgoal Inference After reasoning, infer the agent’s likely subgoal-a short
natural-language statement that describes the immediate purpose behind the action.

Output Format:

### Reasoning
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[Your reasoning process-a few sentences explaining how the action relates to the goal
and context]

### Subgoal
[A short sentence describing the inferred subgoal]

Listing 3. Prompt template for deriving return from procedural memories.

============================================================
Prompt Get_Return
============================================================

You will receive:\newline
Goal Description: A text explaining what the agent was trying to achieve.\newline
Process Description: A text describing the agent’s actions, decisions, and progress

toward that goal.\newline
\newline
Your task:\newline
Analyze the agent’s process and determine how much of the goal was completed,

considering the following aspects:\newline
\newline
Grading Criteria (Score 1--10):\newline
10: The agent fully accomplishes the goal with no significant omissions; actions are

fully aligned with the goal.\newline
8--9: The agent completes most of the goal with only minor gaps; strong alignment but

not perfect.\newline
6--7: Partial completion; the agent covers many key elements but leaves notable parts

unfinished or poorly executed.\newline
4--5: Limited progress; the agent attempts the goal but completes less than half or

does so in an ineffective way.\newline
2--3: Very little completion; actions barely connect to the goal or achieve only

minimal results.\newline
1: No meaningful progress; actions do not contribute to achieving the goal at all.\

newline
\newline
Important Instructions:\newline
Base the score only on completion level and alignment with the stated goal.\newline
Do not provide explanations or commentary unless requested.\newline
Output must follow the format below exactly.\newline
\newline
Output Format:\newline
\texttt{\#\#\# Score}\newline
[number from 1 to 10]\newline
\newline
Input:\newline
---\newline
Goal:\newline
\{subgoal\}\newline
Process:\newline
\{procedural\_memory\}

Listing 4. Template for deriving the reward rt of action at given current state st, goal gt and action at, as well as next observation ot+1.

============================================================
Prompt Get_Reward
============================================================

You will be given:
Goal: the agent’s overall objective.
State (at time t): what the agent knew and had done before taking the action.
Action (at time t): the single action the agent chose.
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Observation (at time t + 1): the immediate outcome produced by that action.
Your task is to infer the reward - that is, a evaluation in natural language on how the

agent’s action contributes (positively or negatively) to achieving the overall
goal, based on the resulting observation.

Follow these steps carefully:
1. Reasoning Process:
Explain how the action relates to the Goal given the State, and whether the Observation

matches the expected helpful or unhelpful outcome.
Consider whether the action advances progress, causes setbacks, reveals new useful

information, or wastes effort.
Summarize your reasoning about the causal contribution of the action to the goal.
2. Final Reward:
Use descriptive language to write a concise natural-language evaluation of the agent’s

action.
The reward should express how much and in what way the action helped or hindered

achieving the goal.
Input:
Goal: {goal}
State (at time t): {state}
Action (at time t): {action}
Observation (at time t + 1): {observation}
Output format:
### Reasoning
[Your reasoning process here]
### Reward
[Natural-language reward statement that evaluate the agent’s action]
some prompt

C.2. Extract Knowledge

Semantic Given a standardized episodic unit et, we extract semantic memories as proposition–tag pairs. We query an LLM
using the prompt in Listing 5, which returns up to Nmax = 10 items in a fixed schema. Each item contains a Statement
field (a proposition in the main paper) and a Tags field (a list of associated concepts). We deterministically parse the LLM
output into (p, T ) pairs, where p is the proposition text and T is the corresponding concept set.

We materialize these outputs into the semantic graph GS by creating a low-level proposition node for each p and high-level
concept nodes for each c ∈ T , caching dense embeddings and metadata for all nodes. We add two edge types: i) membership
edges linking propositions to their concept tags (p → c), and ii) provenance edges linking each proposition back to its
source episodic unit in the episodic graph GE (p→ et). When multiple propositions originate from the same episodic unit,
we additionally connect them with sibling edges to preserve local co-occurrence structure.

Listing 5. Prompt template for extracting semantic knowledge from episodic trajectories.

============================================================
Prompt Get_Semantic
============================================================

You are an expert at extracting precise, factual information from documents.
Your output must prioritize specificity, avoid ambiguity, eliminate redundancy, and

strictly follow all formatting rules.

**CORE INSTRUCTIONS:**

1. Fact/Statement Extraction & Deduplication:
* Identify distinct, factual statements from the document.
* Resolving Vague References: If the subject of a statement is a pronoun or a vague

description (e.g., ’the film’, ’the band’, ’the company’, ’he’, ’she’, ’they’), you
MUST rewrite the statement based on understanding of whole document so that the

subject is a fully specified and concrete entity name taken from the document. You
are NOT allowed to keep vague subjects in the final fact/statement.

* Example of Resolving Vague References:
BAD: ’The film was directed by xxx.’, ’This movie is produced by xxx’
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GOOD: ’Vaada Poda Nanbargal was directed by Manikai.’, ’Vaada Poda Nanbargal is
produced by xxx’

* Concrete Phrasing: Every statement MUST be phrased using explicit, identifiable names
or titles. You are FORBIDDEN from using ANY vague references including but not

limited to: ’the tour’, ’the film’, ’the movie’, ’the band’, ’it’, ’he’, ’she’, or
’they’.

* Example of Concrete Phrasing:
BAD: ’The tour earned over $50 million.’
GOOD: ’NSYNC’s Second II None Tour earned over $50 million.’
* Statement Length Policy (IMPORTANT): Each fact/statement does NOT have to be a single

short sentence. A statement MAY be a compact multi-sentence block that groups
tightly related information, but it must contain AT MOST 4 sentences total. These
sentences should come from the original document material, potentially lightly
edited ONLY to resolve vague references.

* Avoid Redundancy: You MUST merge similar or overlapping facts into single,
comprehensive statements. Do NOT create multiple statements that repeat the same
core information with minor variations.

2. Tag Generation:
* For each fact/statement, generate a list of tags.
* The number of tags per fact is flexible and should reflect the information density of

the statement.
* Tags should cover key spans such as: entity names, years, numbers, nationalities,

languages, genres, roles, object types, descriptive words, etc.
* The MAJORITY of tags SHOULD be SHORT TEXT SPANS copied VERBATIM from the statement (

exact substrings). These tags are directly grounded in the surface form of the text
.

* You MAY occasionally create additional tags that are not literal substrings of the
current statement, in the following cases:

* You combine adjacent words into a single phrase (e.g., ’romantic comedy film’).
* You import a surface span (exact phrase) from ANOTHER part of the document to make

the meaning of the current statement explicit (for example, when resolving pronouns
or phrases like ’the film’, ’the band’, etc.).

* When the subject of a statement is a pronoun or a vague description (e.g., ’the movie
’, ’the band’, ’the hotel’), you MUST add at least one tag that names the
underlying entity explicitly, using the exact surface form that appeared elsewhere
in the document. This cross-statement tag may come from a previous or later
sentence as long as it is clearly the same entity.

* If a tag is a verb, you MUST use its base (lemma) form (e.g., ’play’, not ’played’, ’
playing’, or ’to play’).

* No Schema/Type Labels: You are FORBIDDEN from using meta-labels or ontology-like
category names such as: ’Name’, ’Person’, ’Year’, ’Date’, ’City’, ’Country’, ’
Location’, ’Genre’, ’Language’, ’FilmTitle’, etc. Tags are NOT type labels; they
are content-bearing phrases.

* Tags should be relatively short and as fine-grained as needed. For example,
adjectives and modifiers like ’Indian’, ’Tamil-language’, ’romantic’, ’comedy’
SHOULD usually be separate tags if they appear in the statement.

OUTPUT CONSTRAINTS:
* Extract up to 10 facts, but prioritize QUALITY over quantity. If there are fewer than

10 truly distinct facts, output fewer.
* Each fact must provide unique information not covered by other facts.
* ABSOLUTELY NO generic references -- every statement must explicitly name the specific

entity.

**DOCUMENT:**
{observation}

OUTPUT FORMAT:
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### Facts

1. **Statement:** [statement]
**Tags:** [tag0, tag1, tag2, tag3, ...]
2. **Statement:** [statement]
**Tags:** [tag0, tag1, tag2, tag3, ...]
...

Procedural Given a standardized episodic sequence Mepi = [et]
T
t=1 with subgoal annotations gt, we first segment the

full trajectory into coherent workflow chunks by detecting shifts in adjacent subgoals. We compute embeddings of each
subgoal and start a new segment if the two adjacent subgoals have similarity below a set threshold. Each segment M (i)

epi is
then linearized into a compact process trace (e.g., a stepwise state–action–reward description) and fed to an LLM using the
prompt in Table 6 to produce a structured (intent, prescription) pair (u(i), π(i)), where u(i) abstracts the segment objective
and π(i) describes an environment-agnostic procedure that can be reused in future tasks.

To support quality-aware reuse, we assign each prescription a scalar return score ρ(i) ∈ [1, 10] via a separate LLM evaluator
(Table 3), conditioned on the intent and the segment trace. We then materialize (u(i), π(i), ρ(i)) into the procedural graph
GP by creating an intent node and a prescription node, caching embeddings and metadata for both. To reduce intent
proliferation, an incoming intent embedding ϕ(u) is matched against existing intent nodes; if the best cosine similarity
exceeds threshold θequal, we merge the two intent strings via an LLM rewrite (Table 7) and refresh the node embedding,
otherwise we create a new intent node. The hierarchical relation is represented as a directed adjacency from intent to its
prescriptions, i.e., u SOLVES−−−−→ π (implemented as intent-node child lists, hence unidirectional). Finally, each prescription node
is linked back to its originating episodic evidence through provenance edges π → et for all et ∈M

(i)
epi, enabling downstream

verification and optional recovery of concrete interaction context when a retrieved procedure requires elaboration.

Listing 6. Prompt template for extracting procedural experience from episodic trajectories.

============================================================
Prompt Get_Procedural
============================================================

You will be given an utterance of an agent. Your task is to analyze the utterance and
derive

-- a main goal that the agent is pursuing.
-- an experiential insight --- a concise reflection that summarizes the agent’s

behaviour.

Follow this process when generating your response:

Reasoning: Analyze the utterance and write down the generalizable information and
patterns that would be useful as memory for future tasks.

Output goal and experiential insight: Produce one sentence describing the general goal
of the utterance, using abstract language. Produce one paragraph in natural
language that clearly expresses the experiential insight and the reflection that
summarizes the agent’s behaviour.

Output format:

### Reasoning
[Your reasoning process]

### Goal
[A sentence that concludes the goal]

### Experiential Insight
[The paragraph that expresses the experiential insight]

Input: Trajectory: {trajectory}

24



PlugMem: A Task-Agnostic Plugin Memory Module for LLM Agents

============================================================
Prompt Get_Return
============================================================

You will receive:
Goal Description: A text explaining what the agent was trying to achieve.
Process Description: A text describing the agent’s actions, decisions, and progress

toward that goal.

Your task:
Analyze the agent’s process and determine how much of the goal was completed,

considering the following aspects:

Grading Criteria (Score 1--10):
10: The agent fully accomplishes the goal with no significant omissions; actions are

fully aligned with the goal.
8--9: The agent completes most of the goal with only minor gaps; strong alignment but

not perfect.
6--7: Partial completion; the agent covers many key elements but leaves notable parts

unfinished or poorly executed.
4--5: Limited progress; the agent attempts the goal but completes less than half or

does so in an ineffective way.
2--3: Very little completion; actions barely connect to the goal or achieve only

minimal results.
1: No meaningful progress; actions do not contribute to achieving the goal at all.

Important Instructions:
Base the score only on completion level and alignment with the stated goal.
Do not provide explanations or commentary unless requested.
Output must follow the format below exactly.

Output Format:
### Score
[number from 1 to 10]

Input:
---
Goal:
{subgoal}
Process:
{procedural_memory}

Listing 7. Prompt template for merging two similar intents.

============================================================
Prompt Get_New_Subgoal
============================================================

Each goal may contain overlapping or complementary information.
Your task is to carefully combine them into a single, coherent, and well-structured

goal that preserves all important details from both.
Avoid redundancy and ensure the merged goal sounds natural and consistent in tone.

Input:
Earlier goal: {goal_1}
Later goal: {goal_2}

Output:
Merged goal: [Write the unified goal here]
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C.3. Retrieval with Interleaved Abstraction and Specificity

This appendix provides implementation-oriented details that complement the high-level description in Section 3.2. PLUG-
MEM performs interleaved multi-hop retrieval over the semantic graph GS and procedural graph GP by alternating between
i) abstraction-level routing through concept/intent nodes and ii) specificity-level expansion over proposition/prescription
nodes. Given a query Q, the retriever is orchestrated by three LLM prompts: GETMODE (Listing 8) selects the memory
type(s) to emphasize; GETPLAN (Table 9) proposes the next-hop abstract signals (concept tags for GS or subgoals/intents
for GP ); and MULTIHOPCTRL (Listing 10) serves as a retrieval controller that decides whether the current evidence is
sufficient to stop, or which low-level nodes to prioritize in the next hop.

At hop t, retrieval starts from a low-level candidate pool Ct. We first expand candidates through two complementary
channels. (Embedding channel) We embed the current query text Qt and retrieve a set of high-scoring low-level nodes
by dense similarity. (Linking channel) In parallel, we run GETPLAN to produce an abstract plan (concept tags for GS or
intents/subgoals for GP ), match it to the corresponding high-level nodes, and activate their adjacent low-level neighbors via
membership edges. The two candidate sets are merged (union), then reranked and pruned back to a fixed budget (top-K)
using a value function (primarily relevance, optionally combined with metadata such as importance/recency). Throughout
the process, high-level nodes are used only as intermediate routing signals and are not retained in Ct.

After obtaining the budgeted candidate set, we invoke MULTIHOPCTRL to assess sufficiency. Concretely, MULTIHOPCTRL
returns a strict JSON object with an enough flag and an optional list of selected low-level node IDs (top node ids),
constrained to be a subset of the available candidates; if enough=true, it returns an empty list. If enough=true,
retrieval terminates early and the current candidates are returned (or mapped to provenance-linked episodic nodes when
episodic memory is requested). Otherwise, we keep only the selected nodes (capped in our experiments) as the “focus set”
and integrate them with the previous query to form the next-hop query Qt+1. This integration can be performed by an
LLM-based rewriter, but we find that simple concatenation of Qt and the selected facts performs comparably well and is
used as the default for efficiency.

The retrieval loop repeats until MULTIHOPCTRL signals sufficiency or a hop limit is reached. The overall control flow is
summarized in Listing 14.

Listing 8. Prompt template for inferring potential memory type to be used from query.

============================================================
Prompt Get_Mode
============================================================

You are given a task description that the agent is pursuing and the observation from
the task

Please analyze the task description and observation to determine the type of memory
required to complete it effectively. There are three possible memory types:

Episodic Memory: This is needed if the task requires you to answer questions based on
events. For example, answering user’s question depending on historical conversation
.

Semantic Memory: This is needed if the task requires you to recall objective
information. For example, answer the question based on objective knowledge or
information.

Procedural Memory: This is needed if the task is completing a subgoal under an
interactive environment that agent need to perform a workflow. For example,
completing an instruction in web navigation tasks.

First analyze that task and observation and decide which only one memory type needed.
When there is a conflict, prioritize the information in the Task Description when
making decisions.

Output Format:

### Reasoning

[Your analyze of which memory is needed depending on task and observation]

### Memory Type

## [Your final decision, episodic_memory or semantic_memory or procedural_memory]
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Input:
Task Description: {task_type}
Observation: {observation}

Listing 9. Prompt template for inferring abstraction concepts for next step of retrieval.

============================================================
Prompt Get_Plan
============================================================

You are an expert at analyzing an agent’s goal and current observation and generating
retrieval tags for a goal-directed question-answering system.

Your setting:

* Goal: The agent’s overall objective to accomplish.
* Current Subgoal: The subgoal the agent is currently pursuing. (can be None)
* Current State: A description of the agent’s current internal state. (can be None)
* Input (Current Observation): The agent’s most recent observation (typically a

question or task instruction).
* Task: Extract a prioritized set of high-quality tags that are most likely to retrieve

information that directly helps accomplish the Goal.

Instructions:

1. Goal-directed Tag Selection (CRITICAL):

* Read the Goal and the Current Observation carefully.
* Only generate tags that are HIGHLY LIKELY to retrieve evidence needed to solve/

complete the Goal.
* Prefer tags that identify:
* The target entity/entities the Goal is asking about (people, organizations, places,

works, events).
* Bridge entities implied by the observation that are likely required for multi-hop

retrieval.
* Explicit constraints: dates, years, roles, titles, unique descriptors, numbers.

* Avoid low-signal or generic tags that are unlikely to retrieve helpful evidence (e.g
., "known for", "famous", "character" unless the Goal specifically depends on them)
.

2. Concrete, Grounded Tags:

* The MAJORITY of tags MUST be short text spans copied VERBATIM from the Goal or the
Current Observation (exact substrings).

* You MAY add a SMALL number of non-literal tags only if they are short, strongly
implied, and clearly necessary for retrieval (e.g., a canonical name expansion or a
standard alias).

* If a tag is a verb, you MUST use its base (lemma) form (e.g., "direct", not "directed
" or "directing").

3. Prioritization & Quantity:

* the number of tags in total should be proper. (not "as many as possible").
* Sort tags by expected retrieval usefulness (most useful first).
* Ensure tags are content-bearing and relatively short.

4. CRITICAL -- Forbidden tags:

* Do NOT generate the tag "user".
* Do NOT use meta-labels or type names such as "Name", "Person", "Year", "Date", "City

", "Country", "Location", "Genre", "FilmTitle", etc.
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Output Format:

### Reasoning

[You process of analyzing the information and completing the task]

### Tags

**Tags:** ["tag0", "tag1", "tag2", "tag3", ...]
(for example: "Central Area", "focal point", "famous for", etc)

### Next Subgoal

## [A single best next subgoal that the agent should pursue now.]

Input:
Goal: {goal}
Current Subgoal: {subgoal}
Current State: {state}
Current Observation: {observation}

Listing 10. Prompt template for controlling mutli-hop retrieval process.

============================================================
Prompt Multi-hop_Retrieval
============================================================

You are a retrieval controller for multi-hop question answering.
Return **STRICT JSON only**:
{
"enough": true/false,
"top_node_ids": [int, int, ...]
}

**Constraints:**
-- top_node_ids length <= {n_facts_new_query}
-- top_node_ids must be a subset of available ids
-- if enough=true => top_node_ids=[]

**Question:**
{question}

**Available node ids:**
{available_ids}

**Retrieved facts:**
{semantic_memory_str}

C.4. Reasoning

We design tailored reasoning prompts for each memory type based on their unique structural characteristics.
In alignment with the objective of the reasoning module is to aggregate and condense retrieved memory mentioned in
Section 3.3, we query the LLM to extract information relevant to the question, utilizing the prompt structure detailed in
Listing 12.
Given that episodic memory is often long and unstructured, we observed that information extraction is inefficient as most of
the LLM is not deliberately trained on the task. Instead, we find that, like prompt in Listing 11, directly asks the LLM to
reason over every memory and answer the question successfully leveraging the reasoning ability of LLM while containing
most of the useful information in the reasoning process. The entire output including the reasoning process is then preserved
as the extracted information.
Procedural memory is primarily utilized during multi-turn decision-making tasks. To support that, we prompt the LLM to
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Table 14. Multi-hop retrieval control flow (pseudo-code style).

Input: query Q; graphs (GE , GS , GP ) with provenance links to
GE; budget K; hop limit Tmax

Output: retrieved context R

F ← TaskAdapter(Q) { F ⊆ {E,S, P} }
C ← InitLowLevel(Q, {GS , GP }) { score all low-level nodes }
C ← TopK(C,K)

for t = 1 to Tmax do
if Stop(Q,C) then break
qa ← Abstract(Q,C) { concepts for GS; intents for GP }
C ← C ∪ ExpandLowLevel(qa, {GS , GP })
C ← RerankPrune(C,K) { e.g., relevance, etc. }

end for

if E ∈ F then
R ← ToEpisodic(C,GE) { map via provenance }

else
R ← C

end if
return R

integrate diverse experiences consisting of both successful and failed memory from similar tasks. As shown in Listing 13,
this process generates coherent and actionable guidance to fuel the agent’s next action.

Listing 11. Prompt template for reasoning and compressing for retrieved episodic memories.

============================================================
Prompt Reason_Episodic
============================================================

I will give you information of history chats between you and a user. Please answer the
question based on the information. Answer the question step by step: first extract
all the relevant information, and then reason over the memory to get the answer.

Information:

{information}

Current Date: {time}
Question: {question}
Answer (step by step):

Listing 12. Prompt template for reasoning and compressing for retrieved semantic memories.

============================================================
Prompt Reason_Semantic
============================================================

I will give you several retrieved facts. Extract all the useful information relevant to
the question.

In the output reasoning information, use the original wording from the retrieved facts
as much as possible, and do not replace it with synonyms or near-synonyms.

If no useful information found, just return "null".
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## Output format:

### Reasoning

(process of extract information)

### Information

## (The useful information you extract)

Input:
Facts: {semantic_memory}
Current Date: {time}
Question: {observation}

Listing 13. Prompt template for reasoning and compressing for retrieved procedural memories.

============================================================
Prompt Reason_Procedural
============================================================

Following information will be provided:
Question: The question the user is asking.
Information: Several pieces of information that may be relevant to the question.

Your task:

1. Carefully read the user’s question.
2. Analyze each piece of retrieved information and determine how relevant and useful it

is for answering the question.
3. Based on your analysis, integrate all the useful information into a single coherent

piece of content that helps the agent to answer the question. When you think
information is insufficient or contradictory, generate the most possible
information. The integrated content should be concise, accurate, and relevant to
the user’s question.

## Output format:

### Reasoning

(Your reasoning for analysis of given question and information.)

### Final Information

## (The synthesized information that should be provided to the agent.)

Input:
Question: {observation}
Information: {procedural_memory}

C.5. Full Operations on Memory Graph

Setup. We conduct multiple rounds of controlled experiments on the HotpotQA-induced semantic subgraph. We choose
HotpotQA for two practical reasons: i) its evidence is largely factual and extractive, which makes semantic memories
comparatively stable and less sensitive to stylistic variance; and ii) the resulting subgraph is lightweight enough to support
fast iteration over different merge thresholds and update policies.

Given a semantic node, our update routine first performs candidate discovery by collecting all semantic nodes that share
at least one concept/tag with it (i.e., neighbors under the tag-induced projection). We then compute embedding similarity
between the current node and each candidate, rank candidates by similarity, and select the top-m candidates whose
similarity exceeds a pre-defined threshold τ (we use m=1 by default, i.e., only the most similar candidate above threshold is
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considered). If a pair (si, sj) is selected, we trigger a merge operation by calling an LLM to i) synthesize a new semantic
memory that better summarizes the combined information, and ii) decide whether to deactivate the original nodes (delete
neither, delete both, etc.) according to explicit rules encoded in the prompt; the full prompt is shown in Listing 14.

Listing 14. Prompt template for checking and merging semantic nodes in memory update.

============================================================
Prompt Merge_Semantic
============================================================

You are given two memory items about a related topic. One came earlier (Information 1)
and the other came later (Information 2).

Your tasks:
(1) Merge them into ONE improved, clear, concise statement. Do not invent new facts.
(2) Decide whether to deactivate (soft delete) the original two nodes after merging.

Inputs:
Information 1 (Earlier Information): {memory_earlier}
Information 2 (Later Information): {memory_later}

Deactivation decision rules (choose exactly ONE case):

Case A: "UPDATE_SAME_FACT"

* Condition: Information 1 and 2 are essentially describing the same fact/event, and
Information 2 mainly updates/corrects/refines details of Information 1.

* Action: deactivate BOTH originals (earlier and later) because the merged node fully
supersedes them.

Case B: "SAME_TOPIC_MERGE_WELL"

* Condition: Information 1 and 2 are strongly related under the same topic, and the
merged statement reads naturally as a unified summary (not an awkward splice).

* Action: deactivate BOTH originals (earlier and later).

Case C: "WEAK_RELATED_STITCH_RISK"

* Condition: Information 1 and 2 are only weakly related; merging feels like stitching
two segments; and deactivating either original would likely harm future retrieval.

* Action: deactivate NEITHER original.

Hard constraints:

* Output MUST be valid JSON (no Markdown, no extra text).
* relationship MUST be one of the three labels above.
* If relationship is Case A or B => deactivate_earlier=true AND deactivate_later=true.
* If relationship is Case C => deactivate_earlier=false AND deactivate_later=false.
* If the two memories conflict, prefer Information 2 as the more up-to-date.
* Output the simple reasoning of why you made the decision.

Output MUST be valid JSON with exactly these keys:

* merged_statement (string)
* relationship ("UPDATE_SAME_FACT" | "SAME_TOPIC_MERGE_WELL" | "

WEAK_RELATED_STITCH_RISK")
* deactivate_earlier (boolean)
* deactivate_later (boolean)
* simple_reasoning (string)

Return ONLY the JSON object.
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Thresholds and evaluation. We evaluate two merge thresholds, τ ∈ {0.6, 0.7}, on the same HotpotQA subset. We
report downstream QA performance (EM/F1) as well as graph statistics before and after update. The results show that
performance remains within normal fluctuation, while the graph becomes more compact with more controllable candidate
fan-out. Concretely, with τ=0.6, 477/3413 semantic nodes trigger a merge; with τ=0.7, 171/3413 nodes trigger a merge,
reflecting the expected trade-off between aggressiveness and conservativeness.

We compare the downstream QA performance on the same HotpotQA subset before and after semantic graph update
under two merge thresholds. Without update, the system achieves an EM/F1 of 61.00/74.39. With update at τ=0.6, the
EM/F1 becomes 63.00/73.97, and with update at τ=0.7, the EM/F1 becomes 62.00/74.65. Overall, these differences are
within normal run-to-run fluctuation, suggesting that semantic graph update/merge does not materially degrade end-to-end
performance on this subset.

Graph quality: compactness and candidate controllability. We characterize the structural effect of update/merge along
two axes.

• Compactness. We measure compactness using the number of active semantic nodes Ns, the number of used tags
Nt, and the number of semantic–tag bipartite edges Ebip (attachments). With the stricter threshold τ=0.7, the
updated graph reduces active semantic nodes from 3413 to 3242 (−5.0%), used tags from 12501 to 11812 (−5.5%),
and bipartite edges from 23230 to 20604 (−11.3%), indicating lower redundancy in semantic memories and their
tag attachments. We also report the (non-deduplicated) upper bound of tag-induced semantic co-occurrence pairs,∑

t

(
deg(t)

2

)
, which decreases from 78279 to 57581 (−26.5%). This suggests that update/merge effectively prunes

redundant co-attachments that would otherwise create dense but uninformative connectivity.

• Candidate controllability. Our retrieval/update pipeline uses tag-induced candidate generation: for a semantic node,
we take the union of semantic IDs attached to its tags as the candidate set. To quantify how controllable the candidate
fan-out is, we sample active semantic nodes and compute the size of their candidate sets (unique neighbors reachable
via tags, excluding itself). With τ=0.7, the candidate set size becomes substantially smaller and thus more controllable:
the sampled mean decreases from 38.36 to 31.28 (−18.5%), and the sampled median decreases from 18.0 to 14.0
(−22.2%). Intuitively, by merging near-duplicate semantic items and deactivating redundant originals, the graph
reduces unnecessary expansions through shared tags, improving computational stability without degrading downstream
EM/F1.

Overall, these results indicate that semantic update/merge can improve graph compactness and reduce redundancy while
preserving retrieval support, as evidenced by stable HotpotQA accuracy under both thresholds.

D. Information-Theoretic Evaluation of Memory Efficiency
We present a framework to quantify the utility of generated memory. We decompose memory efficiency into two dimensions:
accuracy (Pointwise) and certainty (Distributional), and provide a unified interpretation of their connections.

D.0.1. PRELIMINARIES AND NOTATION

We define the operational environment and the agent’s decision-making process.

• State Space (S): The set of all possible environmental states or contexts. Let s ∈ S denote the current state.

• Action Space (A): The set of all possible actions. Let a ∈ A denote an action taken by the agent.

• Optimal Action (a∗): Let a∗ ∈ A denote the ground-truth optimal action (or the actual action chosen by a demonstra-
tor/oracle) given the current state s.

• Memory Space (M): The output space of the memory generation module. Let m ∈M denote a generated memory
sequence. Here, m is not necessarily a subsequence of the raw corpus, but can be a constructed representation (e.g.,
abstraction, inference, or summary) optimized to augment the agent’s decision-making in the current state s.

• Memory Generator (Gϕ): A parameterized function (e.g., a search engine, or an LLM) that maps the current state s
and a raw memory base K to a memory artifact. We define the process as m = Gϕ(s,K). This function encapsulates
operations like retrieval and reasoning to explicate implicit logic.
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• Memory Length (|m|): Let |m| denote the length of the memory sequence m in number of tokens.

D.1. Pointwise Metric: Accuracy and Density

D.1.1. QUANTIFYING INFORMATION GAIN VIA POINTWISE MUTUAL INFORMATION (PMI)

We model the agent’s decision-making as a conditional probability distribution over actions and distinguish between the
agent’s policy with and without access to the memory module.

• Baseline Policy (Prior): The probability of selecting the optimal action a∗ given only the current state s, without
memory augmentation:

Pbase(a
∗ | s)

• Memory-Augmented Policy (Posterior): The probability of selecting the optimal action a∗ given the current state s
and the generated memory m:

Pmem(a
∗ | s,m)

To quantify the specific contribution of the generated memory m toward selecting the correct action a∗, we employ Pointwise
Mutual Information (PMI).

We define the Decision Information Gain as:

PMI(a∗;m | s) = log2
Pmem(a

∗ | s,m)

Pbase(a∗ | s)
.

Interpretation.

• If PMI > 0: The memory m provided positive information, increasing the probability of selecting the correct action
a∗.

• If PMI = 0: The memory m was irrelevant to the decision.

• If PMI < 0: The memory m was misleading, decreasing the probability of selecting a∗.

D.1.2. MEMORY INFORMATION DENSITY (POINTWISE GAIN PER TOKEN)

We normalize the total information gain by the cost of processing the memory (its token length). The Memory Information
Density is defined as:

ρ(a∗,m) =
PMI(a∗;m | s)

|m|
.

Substituting the PMI definition:

ρ(a∗,m) =
1

|m|
· log2

(
Pmem(a

∗ | s,m)

Pbase(a∗ | s)

)
.

Unit. Bits per Token (bits/token).

D.1.3. SUMMARY OF THE METRIC

This framework evaluates the memory module not only on effectiveness (did it help?) but also on conciseness (did it help
efficiently?).

• Objective: Maximize ρ(a∗,m).

• Optimization Goal: Generate memory content that maximizes the likelihood of a∗ while minimizing the token count
|m|.

33



PlugMem: A Task-Agnostic Plugin Memory Module for LLM Agents

D.1.4. AGGREGATE EVALUATION: GLOBAL MEMORY EFFICIENCY

To evaluate the memory module’s performance over a dataset

D = {(si, a∗i ,mi)}Ni=1,

consisting of N decision instances, we compute the Global Memory Information Density, denoted as ρglobal.

Unlike the arithmetic mean of individual instance efficiencies (which can be numerically unstable for short memory
sequences), ρglobal represents the amortized information gain per token consumed across the entire evaluation set. It answers
the question: “For every token of memory generated by the system, how many bits of decision-relevant information are
gained on average?”

We define ρglobal as the ratio of the total cumulative Pointwise Mutual Information to the total cumulative memory length:

ρglobal =

∑N
i=1 PMI(a∗i ;mi | si)∑N

i=1 |mi|
.

Expanding the PMI term, the calculable form is:

ρglobal =

∑N
i=1 log2

(
Pmem(a

∗
i |si,mi)

Pbase(a∗
i |si)

)
∑N

i=1 |mi|
.

Properties of this Metric

1. Token-Level Weighting: By summing the lengths in the denominator, this metric implicitly weighs the contribution of
longer memory sequences more heavily, ensuring that expensive generations must justify their cost with proportionally
higher information gain.

2. Robustness: It is robust to the “small denominator problem,” where an instance with a very short memory context
(e.g., |mi| = 1) might otherwise produce an artificially high efficiency score that skews the dataset average.

3. System-Wide Interpretation: A value of ρglobal = 0.5 indicates that, on aggregate, the system requires two tokens of
memory context to gain one bit of information about the optimal action.

D.1.5. CONTROL AND FILTERING: DEFINING THE EVALUATION SCOPE

To ensure the metric captures the marginal utility of the memory module rather than the underlying difficulty of the tasks,
we introduce a filtering mechanism. This isolates instances where the agent stands to benefit from external information.

The Redundancy Filter (High Prior Confidence) We exclude instances where the baseline policy is already confident in
the optimal action, as memory generation in these cases is functionally redundant.

We define the Active Evaluation Subset, denoted as Dactive ⊆ D, as:

Dactive = {(si, a∗i ,mi) ∈ D | Pbase(a
∗
i | si) < τconf} ,

where τconf is a pre-defined confidence threshold (e.g., τconf = 0.8 or 0.9).

Rationale. If Pbase ≥ τconf, the agent “knows” the answer. Any generated memory m, even if relevant, yields negligible
Information Gain (PMI→ 0). Including these lowers ρglobal unfairly.

The Empty Memory Generation Case We must account for cases where the memory module decides not to generate any
information or returns an empty sequence (|m| = 0).

• Handling: If |mi| = 0, the instance is excluded from the density calculation because the denominator is zero.

• Note: While excluded from the density metric (efficiency), these samples should still be tracked separately for recall
rate (effectiveness).
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Refined Global Metric Combining the “Ratio of Sums” approach with the “Redundancy Filter,” the final operational
metric is calculated only over the active subset:

ρfinal =

∑
i∈Dactive

PMI(a∗i ;mi | si)∑
i∈Dactive

|mi|
.

This refined formulation ensures we measure the efficiency of necessary memories, providing a cleaner signal of the module’s
contribution to complex reasoning.

D.2. Geometric Analysis: The Utility–Cost Landscape

To understand the mechanism behind efficiency gains, we analyze the memory module through a geometric lens. We
construct a Utility–Cost coordinate system where:

• X-Axis (Cost): Memory length, L = |m|.

• Y-Axis (Utility): Information gain, I(L) = PMI(a∗;m | s).

Standard intuition might suggest monotonic logarithmic growth of utility with respect to context length. However, in
real-world agentic scenarios involving noise, we propose that the curve follows a unimodal (peaking) distribution.

D.2.1. THE PEAKING PHENOMENON AND NOISE TOXICITY

We model the effective information gain I(L) not merely as signal accumulation, but as a superposition of signal extraction
and attention dilution:

I(L) = S(L)− η(L),

where S(L) is the logarithmic signal-accumulation function (monotonically increasing), and η(L) represents the noise
toxicity or cognitive-load penalty.

We identify three qualitative regions on this curve:

1. Under-fitting Region (dI/dL > 0, d2I/dL2 > 0): High marginal utility; critical semantic information is being
generated.

2. The Sweet Spot (dI/dL ≈ 0): The peak Imax where signal is maximized relative to noise.

3. Toxicity Region (dI/dL < 0): The negative marginal utility zone. Extending memory length L introduces more
irrelevant tokens (HTML tags, tangents) than valid signal, diluting the agent’s attention mechanism. As a result, the
probability of the correct action P (a∗) decreases despite having “more context.”

D.2.2. GEOMETRIC INTERPRETATION OF EFFICIENCY (ρ)

In this coordinate system, the core metric—Global Memory Density ρ—has a precise geometric meaning:

ρ(L) =
I(L)

L
,

which is the slope of the secant line from the origin (0, 0) to the operating point (L, I(L)).

This reveals a trade-off between two optimality criteria:

• Point A: Maximum Performance Point. The peak of the curve where dI
dL = 0. This is the performance ceiling

independent of cost.

• Point B: Maximum Efficiency Point. The point where the secant line from the origin becomes a tangent to the curve.
Geometrically, this maximizes the slope ρ = I(L)/L.
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Insight: Efficiency–Performance Gap. Typically, Point B lies to the left of Point A. Pursuing maximum performance
(moving from B toward A) requires disproportionately more tokens and yields diminishing—or even negative—returns.

The “Epiphany” Threshold (Point C). It is also theoretically instructive to identify the Inflection Point (where I ′′(L) = 0),
located to the left of Point B. Economically, this represents the point of Maximum Marginal Utility (max dI/dL). In the
context of memory generation, Point C corresponds to the acquisition of the “Critical Semantic Mass”—the specific token
or phrase that provides the initial breakthrough in context (e.g., retrieving the correct entity name). However, stopping at
Point C is generally suboptimal (under-fitting), as the agent has acquired the key signal but lacks the necessary context
(accumulated between C and B) to robustly execute the decision.

D.2.3. VECTOR DECOMPOSITION OF GAINS

To quantify the improvement of our proposed memory module relative to other baselines, we perform a vector decomposition
in the L–I plane.

Let the baseline vector be
vbaseline = (Lbaseline, Ibaseline)

and our improved method be
vours = (Lopt, Iopt).

The transformation vector is:
∆v = vours − vbaseline = (∆L,∆I).

We classify the improvement direction as:

• Horizontal Shift (∆L < 0, ∆I ≈ 0): Pure Compression—gains arise solely from cost reduction.

• Vertical Shift (∆L ≈ 0, ∆I > 0): Pure Enhancement—better reasoning with the same budget.

• North-West Shift (∆L < 0, ∆I > 0): Hybrid Gain. This indicates the baseline operates in the Toxicity Region.
By refining the memory, we simultaneously reduce cost and increase accuracy by removing noise that harmed
decision-making.

D.2.4. PARETO DOMINANCE

We posit that the proposed module does not merely traverse the same trade-off curve as the naive baseline. Instead, it induces
a Pareto frontier shift.

Let the naive baseline curve be Cbase and our method’s curve be Cours. We claim that over the relevant domain:

∀L, Iours(L) ≥ Ibase(L).

This implies our method raises the theoretical ceiling of the memory system, enabling the agent to handle more complex
tasks (higher required I) that were previously infeasible due to the noise constraints of Cbase.

Remark: Baseline Invariance and Coordinate Shift. It is worth noting that since the naive baseline confidence∑
logPbase(a

∗ | s) is constant for a fixed agent, the Utility axis I(L) is functionally a vertical translation of the raw
posterior log-likelihood

∑
logPmem. While this constant offset shifts the absolute position of the origin (0, 0)—thereby

scaling the absolute value of the density slope ρ—it preserves the topological features of the landscape. Consequently, the
relative comparisons between methods (e.g., the existence of a “toxicity drop” or the location of the “sweet spot”) remain
invariant to the baseline performance.

D.3. Distributional Metric: Certainty and Calibration

While PMI quantifies the accuracy of the memory with respect to the ground truth a∗, it fails to capture the global impact of
memory on the agent’s uncertainty. A memory sequence might slightly increase P (a∗) (positive PMI) while leaving the
agent confused among many other suboptimal actions.
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To measure the memory’s ability to prune the search space and sharpen the decision boundary, we extend the framework to
evaluate the Distributional Information Density.

D.3.1. QUANTIFYING ACTION SPACE COMPRESSION VIA UNCERTAINTY REDUCTION

We employ Shannon Entropy to quantify the uncertainty (or “cognitive load”) inherent in the agent’s policy.

• Prior Uncertainty (Hbase): The uncertainty of the agent given only the state s.

Hbase(s) = −
∑
a∈A

Pbase(a | s) log2 Pbase(a | s)

• Posterior Uncertainty (Hmem): The uncertainty after processing the memory m.

Hmem(s,m) = −
∑
a∈A

Pmem(a | s,m) log2 Pmem(a | s,m)

The Action Space Compression (or Uncertainty Reduction), denoted as ∆H, represents the amount of information (in bits)
the memory contributes toward resolving ambiguity:

∆H(m | s) = Hbase(s)−Hmem(s,m).

Interpretation.

• ∆H > 0: Sharpening. The memory reduced the effective size of the search space (pruning invalid options).

• ∆H < 0: Confusion. The memory introduced conflicting information, flattening the distribution and increasing
uncertainty.

D.3.2. DISTRIBUTIONAL INFORMATION DENSITY (DISTRIBUTIONAL GAIN PER TOKEN)

Analogous to the pointwise metric, we define the Distributional Information Density, ρdist, as the rate of uncertainty
reduction per unit of processing cost:

ρdist(m) =
∆H(m | s)
|m|

=
Hbase(s)−Hmem(s,m)

|m|
.

Unit. Bits of Uncertainty Removed per Token (bits/token).

Safety Analysis: The Confidence-Validity Quadrants To rigorously evaluate memory, we project each instance into a
2D plane defined by:

• X-Axis (Certainty): Action Space Compression, ∆H(m | s).

• Y-Axis (Accuracy): Decision Information Gain, PMI(a∗;m | s).

This projection categorizes memory interaction into one of four regimes:

1. Quadrant I: Efficient Reasoning (∆H > 0,PMI > 0)
“Sharper and Correct.”
The memory confirmed the correct action and ruled out distractors. The agent moved from uncertainty to correct
certainty. This is the ideal operational state.
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2. Quadrant II: Corrective Calibration (∆H < 0,PMI > 0)
“Breaking False Confidence.”
Here, the agent likely started with high confidence in a wrong action (Low Prior Entropy). The memory introduced
necessary doubt, flattening the distribution but raising the probability of the true optimal action a∗.
Significance: This represents a “Rescue” mechanism where the memory fixes the agent’s internal misconceptions.

3. Quadrant IV: The Hallucination Trap (∆H > 0,PMI < 0)
“Confident but Wrong.”
The memory reduced uncertainty but pointed away from the ground truth. The agent became “dogmatically wrong.”
Risk: This is “Toxic Certainty,” the most dangerous failure mode in retrieval-augmented generation (RAG).

4. Quadrant III: Destructive Noise (∆H < 0,PMI < 0)
“Confused and Misled.”
The memory not only failed to point to the correct answer but also increased overall confusion (entropy), effectively
acting as distraction.

D.3.3. VALIDITY-ADJUSTED DISTRIBUTIONAL INFORMATION DENSITY

To synthesize the quadrant analysis into a single scalar metric that rewards efficient reasoning while penalizing hallucinations,
we propose the Validity-Adjusted Distributional Information Density (ρΦ). This metric integrates the magnitude of the
distributional shift with the directionality of the accuracy gain.

Metric Definition We define ρΦ as the product of the validity sign and the normalized distributional work:

ρΦ(m) = sgn(PMI(a∗;m | s))︸ ︷︷ ︸
Direction Validity

· |∆H(m | s)|
|m|

where:

• sgn(·) is the sign function (+1 for improvement, −1 for detriment).

• |∆H(m | s)| is the absolute magnitude of the uncertainty change (bits).

• |m| is the memory length (tokens).

Properties and Interpretation This formulation provides a unified evaluation across all four cognitive regimes:

1. Reward for Efficiency (Quadrant I):
When the agent becomes more certain about the correct answer (∆H > 0,PMI > 0), the metric is positive. Higher
density indicates faster convergence to the truth.

2. Reward for Rectification (Quadrant II):
When the memory corrects a confident error (∆H < 0,PMI > 0), the metric remains positive. Although entropy
increases (the agent becomes less dogmatic), the term |∆H| captures the significant “cognitive work” performed to
break the false confidence, and sgn(PMI) validates this shift as beneficial.

3. Penalty for Hallucination (Quadrant IV):
When the agent becomes confident in a wrong answer (∆H > 0,PMI < 0), the metric becomes negative. The more
“convincing” the hallucination (higher ∆H), the severe the penalty. This acts as a soft safety constraint.

4. Penalty for Destructive Noise (Quadrant III):
When the memory confuses the agent and lowers accuracy (∆H < 0,PMI < 0), the metric is negative. Here, |∆H|
represents the magnitude of the confusion introduced. Since the memory failed to support the correct action, this
“negative work” is penalized, reflecting the cost of processing distracting information.
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Summary. The metric ρΦ answers: “How many bits of valid distributional reshaping (entropy shift) does the memory
module provide per token of cost?”

D.4. Theoretical Unification: The Oracle-Divergence Principle

Thus far, we have analyzed memory efficiency through specific metrics: Accuracy (PMI) and Certainty (Entropy). In
this section, we situate these metrics within a broader information-theoretic framework. We propose that the fundamental
objective of the memory module is to minimize the information-geometric distance between the agent’s policy and the ideal
policy.

We term this the Oracle-Divergence Principle.

D.4.1. THE GENERAL OBJECTIVE: DIVERGENCE REDUCTION

Let Q denote the Oracle Distribution (or the “God View”), representing the ideal policy for the current state s. The goal of
memory generation is to transform the agent’s prior belief Pbase into a posterior Pmem that is statistically closer to Q.

We quantify this improvement using the reduction in Kullback-Leibler (KL) Divergence. The generalized Oracle
Information Gain, ∆div, is defined as:

∆div(m) = DKL(Q ∥ Pbase)−DKL(Q ∥ Pmem).

Since the Oracle distribution Q and the baseline prior Pbase are fixed for a given instance, maximizing this gain is equivalent
to minimizing the divergence of the posterior:

argmax
m

∆div(m) ≡ argmin
m

DKL(Q ∥ Pmem).

Ideally, if the memory is perfect, Pmem converges to Q, and the divergence becomes zero.

D.4.2. PRACTICAL INSTANTIATION: PMI AS A SPECIAL CASE

While the Oracle Q can theoretically model soft labels or multimodal distributions, in the vast majority of discrete agentic
tasks (e.g., tool selection, multi-step reasoning), the objective is canonically defined by a single unique ground truth. Under
this standard deterministic setting, the Oracle distribution collapses from a general probability vector into a Dirac delta
(One-hot) distribution:

Q(a) =

{
1 if a = a∗

0 otherwise

Under this specific One-hot Assumption, the KL-Divergence term simplifies significantly:

DKL(Q ∥ P ) =
∑
a∈A
Q(a) log2

Q(a)
P (a)

= 1 · log2
1

P (a∗)
= − log2 P (a∗).

Substituting this back into the generalized gain equation yields:

∆div(m) = [− log2 Pbase(a
∗)]− [− log2 Pmem(a

∗ | m)]

= log2 Pmem(a
∗ | m)− log2 Pbase(a

∗)

= PMI(a∗;m).

Implication: Tractability and Sufficiency. This derivation reveals that Pointwise Mutual Information (PMI) is not
merely a heuristic, but the algebraic collapse of the generalized Divergence Reduction under the deterministic assumption.
This establishes PMI as the optimal engineering metric because it is:

• Computationally Tractable: It requires tracking only the probability of the ground truth P (a∗), avoiding the
computational cost of modeling the full distributional distance.
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• Theoretically Sufficient: In the one-hot regime, maximizing PMI is mathematically isomorphic to minimizing the
KL-divergence.

Thus, PMI serves as a proxy that effectively bridges abstract information geometry with practical, low-cost evaluation.

D.4.3. THE ENTROPIC COROLLARY

This generalized perspective also explains the role of Entropy Reduction (∆H).

Since the Oracle distribution Q (One-hot) has an entropy of zero (H(Q) = 0), any policy Pmem that successfully minimizes
the divergence DKL(Q ∥ Pmem) must necessarily lower its own entropy.

Pmem → Q =⇒ H(Pmem)→ 0.

Therefore, Accuracy (PMI) and Certainty (Entropy) are not independent objectives. They are coupled features of the same
optimization process:

• PMI measures the alignment of the probability mass with the peak of Q.

• Entropy measures the compactness of the distribution, which is a prerequisite for resembling Q.

D.4.4. SUMMARY.

In this unified view, our framework offers a dual-layered approximation of the theoretical trajectory ∆div:

1. The Accuracy Gain Efficiency Proxy (ρ): By assuming the standard One-hot Oracle, the Pointwise Mutual Information
ρ serves as the primary computational metric. It provides an exact, low-cost measurement of the agent’s transport
toward the optimal action a∗, making it sufficient for large-scale performance benchmarking.

2. The Validated Certainty Gain Proxy (ρΦ): The Distributional Density ρΦ acts as a diagnostic complement. It
approximates the entropy-minimization requirement of the Oracle-Divergence, explicitly safeguarding against “off-
target” confidence (where the agent minimizes entropy toward a wrong distribution Q′ ̸= Q).

Thus, future memory research and prompting work can employ ρ to measure how much the additional tokens (e.g., the
memory tokens) help decision-making, and ρΦ to diagnose how certainly they do so.

E. Additional Experiment Details
E.1. LongMemEval

Setup. To evaluate the agent’s ability to answer questions based on historical user-agent conversations, we utilize
LongMemEval (Wu et al., 2024). Specifically, we employ the LongMemEvalS subset, which features a conversation
context of 115K tokens per test case, aligning with established standards in agent memory research (Li et al., 2025;
Rasmussen et al., 2025). For the PLUGMEM framework, we adopt Qwen2.5-32B-Instruct for the inference of structuring
and retrieval modules, and Qwen2.5-72B-Instruct for the reasoning module. All baseline methods is driven by GPT-4o.
NV-Embed-v2 is used for generating embeddings and Qwen2.5-72B-Instruct is used for all methods as the base agent that
answer the question depending on memory generated. During the retrieval phase, we set k=10, extracting the top 10 most
relevant memory nodes for downstream reasoning.

Baselines. We consider three categories of baselines: i) Vanilla, including no historical conversation in its prompt that
answer depending on the backbone model’s parametric knowledge, or simply answering “I don’t know”.ii) Task-agnostic,
which are not specifically designed for agent-user conversation QA benchmarks. Examples include a standard dense RAG
pipeline that performs turn-level embedding-based retrieval; and agentic memory approaches such as A-Mem (Xu et al.,
2025), which take notes from episodic memory and maintain/update them via a graph-based organization mechanism. iii)
Task-specific, tailored for historical conversation based QA, including knowledge graph based method Zep (Rasmussen
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et al., 2025), and cognitive science oriented structural retrieval method LiCoMemory (Huang et al., 2026). Specifically, for
Zep, we adopt the result reported in their paper. For A-Mem and LiCoMemory, we randomly shuffle the test cases in the
original longmemeval s cleaned.json file from LongMemEval and evaluate them on the same 100 prefix cases.

Metrics. We report Accuracy (Acc. in Table 3), which is evaluated based on LLM-as-a-Judge method of Long-
MemEval(Wu et al., 2024), using GPT-4o as evaluator. Additionally, we also report global density relying on information-
theoretic measures introduced in Section 4.1. Specifically, we instantiate the likelihood terms in Eq. (1) using per-instance
answer overlap: Pmem and Pbase are set to 1.0 if the evaluator judges the answer as correct, and 0.0 otherwise. To avoid
mathematical errors when computing log(Pmem/Pbase) in cases where either Pmem or Pbase equals 0.0, we apply additive
smoothing and use log

(
Pmem+ϵ
Pbase+ϵ

)
when computing PMI, where ϵ is 1% of the success rate of agent without memory on

LongMemEval.

Main Results. The experiment results are summarized in Table 3. PLUGMEM outperforms all baselines on LongMemEval.
Moreover, PLUGMEM attains the highest global information-gain density among all baselines. As shown in Table 15,
PLUGMEM achieves competitive performance compared to several task-specific methods. Notably, PLUGMEM delivers the
top performance on the multi-session subset. This subset is particularly challenging as it requires both accurate retrieval and
precise memory extraction; the agent must retrieve multiple “gold” memories and distinguish between them to maintain an
accurate count. This reveals that the architecture of PLUGMEM successfully bridges the gap between massive data retrieval
and precise cognitive extraction, proving that integrating external memory modules can significantly enhance an agent’s
long-term consistency in dynamic, multi-turn environments.

Table 15. Subset Performance on LongMemEval. (S-S-U: single-session-user, S-S-A: single-session-assistant, S-S-P: single-session-
preference, K-U: knowledge-update, T-R: temporal reasoning, M-S: multi-session)

Method S-S-U S-S-A S-S-P K-U T-R M-S Avg.

Zep 92.9 80.4 56.7 83.3 62.4 57.9 71.2
LiCoMemory 92.9 90.9 50.0 81.2 65.4 63.0 73.0
PLUGMEM 94.3 98.2 60.0 79.5 66.2 64.7 75.1

Ablations. We further conduct ablation studies on the three components of PLUGMEM. For no-structuring,
we replace structured indexing with a simple chunking of the original user–agent conversations at the turn level. For
no-retrieving, we directly concatenate all semantic memories extracted by the structuring module and feed them into
the reasoning module without retrieval.As shown in Table 6, removing all the module leads to consistent degradation in
both task performance and global information-gain density, highlighting their importance for effective memory utilization.
Specifically, removing the retrieval module results in the worst performance, indicating that effective memory utilization
must be grounded in retrieval. Removing the structuring module degrades performance to a level comparable to vanilla
retrieval. While removing the reasoning module only causes a slight drop in accuracy, it leads to a substantial increase in
input memory tokens.

Token Cost Analisys. Table 16 reports the token consumption per sample for different methods on LongMemEval. Since
Zep is only partially open-sourced, we randomly evaluate several samples using Graphit, the open-source graph module on
which Zep is built, to estimate its token usage.

It is expected that PLUGMEM incurs a relatively higher token count, as it goes beyond semantic memory extraction and
additionally standardizes episodic memory and extracts procedural memory. These steps are crucial for task-agnostic
memory organization and enable better generalization across diverse tasks, which task-specific methods that only extract
semantic memory (e.g., LiCoMemory) cannot easily achieve.

Importantly, while the token consumption of PLUGMEM is within similar order of magnitude as competing approaches, the
actual deployment cost differs substantially. PLUGMEM relies exclusively on open-source models for inference, which can
be executed offline or at significantly lower per-token cost. In contrast, several competing methods depend on closed-source
models such as GPT-4o for inference, whose per-token pricing is considerably higher. As a result, when accounting for
model pricing rather than token count alone, PLUGMEM is expected to be substantially more cost-efficient in practice,
despite comparable token usage.
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Table 16. Token Cost Statistics on LongMemEval. (k̃ tokens per sample)

Method NVE Q32in/out Q72in/out 4oin/out

Task-Agnostic

Vanilla RAG 107 - - -
A-Mem 332 - - 786/177

Task-Specific

Zep (Graphit) 194 - - 2545/1189
LiCoMemory 75 - - 585/217

Ours

PLUGMEM 197 1604/418 9/0.4 -

E.2. HotpotQA

Setup HotpotQA (Yang et al., 2018) is a multi-hop question answering benchmark that is widely used to evaluate
multi-step retrieval and reasoning in RAG systems and agentic memory frameworks. Following the evaluation protocol of
HippoRAG2 (Gutiérrez et al., 2025), we use their preprocessed subset containing 1,000 examples. For all methods, we adopt
Qwen2.5-32B-Instruct (Qwen et al., 2025) as the backbone LLM and NV-Embed-v2 (Lee et al., 2025) as the embedding
model, with decoding parameters max-tokens = 2048, temperature = 0.0, top-p = 1.0 During retrieval, we set top-k = 10,
returning the 10 most relevant memory nodes for downstream reasoning.

Episodic memory standardization. PLUGMEM standardizes agent trajectories into RL-inspired episodic tuples
⟨ot, at, st, rt, it⟩ (observation, action, state, reward, intent/subgoal). For HotpotQA, the corpus is indexed passively
rather than generated by an acting agent. We therefore treat each unit of corpus text as a single-step “trajectory” (i.e., T = 1):
each episodic item contains one observation o1 (the text unit being indexed), while action-related fields are not instantiated
by execution. Concretely, we keep the unified tuple interface by setting a1, s1, r1, and i1to an empty (or N/A) placeholder.
The semantic extraction and retrieval primarily operate on the observation content.

HotpotQA multi-hop retrieval control. At each hop t, the retriever gathers a pool of candidates via the two-channel
update: i) link-based expansion via abstract nodes, where the retriever infers a small set of abstract concepts from current
query Qt, matches them to high-level concept nodes in the memory graph, and expands to adjacent low-level proposition
nodes via membership edges; ii) embedding-based retrieval from query Qt directly.

We then invoke an LLM controller to assess whether the currently retrieved candidates are sufficient to answer the question.
If the controller returns enough=true, we terminate early and pass the current fact set to the downstream QA model.
Otherwise, the controller selects a small subset of the most promising candidates to drive the next hop; in our experiments
we cap this subset at top-2 candidates. To form the next-hop query, we integrate the selected candidates with the previous
query. This integration can be performed by an LLM-based re-writer; however, we find that a simple concatenation of the
query and selected candidates performs comparably well in practice, and we therefore adopt concatenation as the default for
efficiency.

Baselines We consider three categories of baselines: i) Vanilla, including no-context inference that relies solely on
the backbone model’s parametric knowledge, and an oracle (gold-context) setting where the model is provided with the
gold supporting context, serving as an approximate upper bound. ii) Task-agnostic, which are not specifically designed
for knowledge-intensive QA benchmarks. Examples include a standard dense RAG pipeline that treats the input as a
one-dimensional text stream, segments it into chunks using a fixed chunk size and overlap window, and performs embedding-
based retrieval; and agentic memory approaches such as A-Mem (Xu et al., 2025), which structure the text stream into notes
and maintain/update them via a graph-based organization mechanism. iii) Task-specific, tailored for knowledge-intensive
QA and multi-hop retrieval, including hierarchical/tree-structured retrieval frameworks RAPTOR (Sarthi et al., 2024) and
graph-oriented designs GraphRAG (Edge et al., 2025), HippoRAG2 (Gutiérrez et al., 2025), and PropRAG (Wang & Han,
2025).

Metrics. We report token-level Exact Match and F1 score (EM and F1 in Table 4) between the model-generated answer
and the reference. Beyond standard end-task metrics such as EM and F1, we also adopt the information-theoretic measures
introduced in Section 4.1 and Appendix D to quantify the information gain by the memory module. For one sample from
benchmark, Pointwise Mutual Information (PMI) is computed as follows:
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PMI(a∗;m | s) = log2
Pmem(a

∗ | s,m)

Pbase(a∗ | s)
(4)

Over a dataset, we report a global, amortized density via a ratio-of-sums:

ρglobal =

∑
i PMI(a∗i ;mi | si)∑

i |mi|
(5)

Concretely, we instantiate the likelihood terms in Eq. (4) using per-instance answer overlap: Pmem is computed from the F1
score between the prediction and the reference answer; Similarly, for Pbase, the prediction is answer from base agent without
memory module. Following the ratio-of-sums aggregation, we report global density by normalizing the summed PMI across
instances by the summed number of memory tokens.

It’s worth noting that, Pbase or Pmem can be zero for some instances, which would make Eq. (1) ill-defined (division by
zero and/or log 0). To stabilize the computation, we apply additive smoothing and use log

(
Pmem+ϵ
Pbase+ϵ

)
when computing

PMI. We find that choosing ϵ too small can lead to excessively large PMI values when Pbase = 0 but Pmem > 0, which
disproportionately affects the aggregate density. Therefore, in our implementation we set ϵ to 1% of the base agent’s F1
score (no memory), and use the same ϵ for both the numerator and denominator.

Ablations. We further conduct ablation studies over the three components of PLUGMEM. For no-structuring,
we replace structured indexing with a chunk-based pipeline (fixed chunk size and overlap) for corpus preprocessing and
evaluation; for no-retrieving, we populate the retrieval candidate set using randomly sampled structured memory
items. As shown in Table 7, removing any single component consistently degrades both task performance and the global
information-gain density. In particular, removing retrieval causes the most substantial performance drop, while removing the
reasoning module markedly increases the number of memory tokens injected into context, leading to lower information gain
per token.

Token Cost Analysis. In addition, we analyze the token cost of PLUGMEM on a HotpotQA subset, logging token usage
during both memory construction (indexing) and evaluation-time retrieval and reasoning, and compare it against competing
baselines.

As shown in Table 17, the token usage of PLUGMEM is comparable to that of other strong baselines and remains within the
same order of magnitude. Notably, PLUGMEM is not the most token-intensive method among the compared approaches,
despite providing a richer memory representation. It it noteworthy that PLUGMEM performs a more fine-grained and
structured memory construction process, enabling unified memory editing, retrieval, and reasoning in downstream stages.
In particular, PLUGMEM jointly constructs three complementary memory types, i.e., episodic, semantic, and procedural,
within a single pipeline, whereas most baselines extract only one or two types in isolation.

While HotpotQA predominantly evaluates semantic knowledge, the one-time cost of joint (E/S/P ) memory construction
enables reuse across tasks and time, allowing the agent to support heterogeneous memory operations without rerunning
separate extraction pipelines. Consequently, this upfront investment naturally amortizes in multi-task, continual, or
long-horizon settings, potentially leading to lower total token cost in realistic deployments.

E.3. WebArena

Setup. WebArena (Zhou et al., 2024) is a realistic and reproducible web navigation benchmark consisting of 812 tasks
spanning five site domains(e.g. shopping, GitLab, etc.), each task instantiated from a curated collection of 241 intent
templates. In this paper, we focus on the Shopping, GitLab, and Multi-site subsets, which collectively cover (i) domain-
specific, procedure-heavy interactions (Shopping, GitLab) and (ii) compositional, cross-site workflows (Multi-site). To
directly test memory evolution and reuse, we adopt an online/offline split aligned with WebArena’s task construction:
WebArena intents are written as templates with multiple instantiations, where tasks from the same template share high-level
semantics but may require different concrete execution traces. Specifically, for each template (e.g., 5 instantiations), we place
one instantiation into the online set and the remaining instantiations into the offline set. To further examine cross-template
knowledge adaptation, we leave template with only one task id in the offline set. The exact data split is stored in our code
repository.
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Table 17. Token Cost Statistics on HotpotQA. (k̃ tokens)

Method Input Output Total

Task-Specific

RAPTOR 331 40 371
HippoRAG2 1350 490 1840

PropRAG 1651 643 2294

Task-Agnostic

Vanilla RAG 110 20 130
A-Mem 1778 261 2039

Ours

PLUGMEM 1919 272 2191

We first evaluate the agent on the online set, then augment the memory module with a small number of high quality
human demonstrations, and finally evaluate on the offline set using the resulting augmented memory module to measure
generalization from newly acquired procedural and semantic knowledge. The agent is allowed to insert and retrieve
memories as it is being evaluated on the online set, but only retrieval is allowed on the offline set. For PLUGMEM, the base
agent is set to be AgentOccam (Yang et al., 2025a) with GPT-4o, a strong baseline that operates within the action space
defined by WebArena and without relying on specialized memory mechanisms. For all methods, we adopt GPT-4o and
Qwen2.5-32B-Instruct (Qwen et al., 2025) as the backbone LLMs and NV-Embed-v2 (Lee et al., 2025) as the embedding
model, with decoding parameters max-tokens = 2048, temperature = 0.0, top-p = 1.0. For all LLM calls within PLUGMEM,
we use Qwen2.5-32B-Instruct first and only delegate quries to GPT-4o if the output perplexity from Qwen2.5 is higher than
a set threshold. For PLUGMEM, we record the entire action trajectory up to the maximum number of steps allowed for the
web agent (20 steps in all experiments). During retrieval, we set top-k = 2, returning the 2 most relevant memory nodes for
downstream reasoning.

PLUGMEM integration with AgentOccam. PLUGMEM is integrated with base web navigation agent for our experiments.
For a given objective, PLUGMEM first retrieve memory and feed the response from the reasoning module to AgentOccam.
After AgentOccam has taken the action (e.g. click [1234]), PLUGMEM generates a short description of the action into
natural language form (e.g. click at My account), this creates a new episodic memory along with the new observation after
the action is taken. At the end of each task, the episodic memory sequence gets inserted into PLUGMEM using the process
described in Methodology and Appendix C. We slightly modified the prompt for AgentOccam by adding an instruction to
follow retrieved memory entries from PLUGMEM. Please see Listing 15 for the added instructions.

PLUGMEM incorporates human demonstration. PLUGMEM is able to incorporate human demonstration trajectories
into memory graph for warm start. In our experiment, we record human demonstration for failed tasks on the online set,
then we inject these recordings for offline evaluation. This is done through ’replaying’ the demo trajectory and rebuilding
episodic memory sequence for insertion. For the offline set evaluation, we disable memory graph inserts to test the quality
of the memory graph. Normally, for a particular task domain, we record and insert human demos in the same task domain.
For the Multi-site task domain, in addition to demo on Multi-site tasks, we additionally include trajectories from other task
domains to further strengthen the memory graph. In this way, we test the cross-domain retrieval and reasoning capability of
PLUGMEM. Over the course of development, we collected 23 Shopping demos, 18 GitLab demos, 10 Reddit demos, 10
Map demos, and 5 Multi-site demos. These human demonstrations are available in our code repository.

Baselines. We consider three categories of baselines: i) Vanilla, base agents that does not rely on retrieval augmentation,
serving as a measure of performance of the backbone LLM. We use AgentOccam (Yang et al., 2025a) as the base agent. ii)
Task-agnostic, which are baselines that adopts retrieval augmentations not specifically designed for web navigation agents.
We include a vanilla dense retrieval pipeline that stores and retrieve past interaction trajectories. We also evaluate A-Mem
(Xu et al., 2025), an agentic memory system that summarizes past interactions into notes and organizes them in a graph-like
structure to allow retrieval of related trajectories. For vanilla retrieval, we set top-k=1. When evaluating A-Mem, we set
top-k=3 to best utilize A-Mem’s ability to retrieve relevant notes. For both methods, we store the first 10 steps per task at
max. iii) Task-specific, open-sourced agentic systems that utilizes specialized memory insertion and retrieval mechanisms.
We include AWM (Wang et al., 2024b), which summarizes past interactions into workflows. To examine and compare how
high quality human demonstrations could be utilized cross all methods, we add human demonstration trajectories between
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Table 18. Token Cost Statistics on WebArena. (k̃ tokens per sample)

Method Q32in/out 4oin/out

Task-Agnostic

Vanilla RAG - -
A-Mem - 7431/1758

Task-Specific

AWM - 4918/1202

Ours

PLUGMEM 10587/1377 3128/371

online and offline evaluations for all task-agnostic and task-specific baselines.

Metrics. WebArena evaluates task completion using functional correctness validator, i.e., programmatic checks that
determine whether the execution achieves the intended goal. We use WebArena’s evaluators and report the success rates on
both the online and offline set. We compute PMI per task sample. We apply additive smoothing and use log

(
Pmem+ϵ
Pbase+ϵ

)
when

computing PMI. We set ϵ to be 1% of AgentOccam’s average success rate over WebArena.

Ablations. We further conduct ablation studies over the three components of PLUGMEM. For no-structuring,
replace the memory graph construction pipeline with vanilla retrieval process, while keeping the reasoning module; for
no-retrieving, we populate the retrieval candidate set using randomly sampled structured memory items. Additionally,
for no-human demo, we omit the intermediate step where we insert high quality human demonstrations between online
and offline evaluations. According to Table 8, the removal of any components would degrade agent success rates or global
information density. We find that removing the retrieval component has the biggest negative impact on all metrics measured.

Token Cost Analysis. As shown in Table 18, PLUGMEM exhibits a higher average token usage than task-agnostic and
task-specific baselines on WebArena. This difference reflects the additional computation required for memory-to-knowledge
abstraction, rather than redundant processing.

In WebArena, reusable knowledge is predominantly procedural, and each task involves multiple interaction steps that must
be recorded, segmented, and abstracted. Accordingly, PLUGMEM allocates additional tokens to standardizing long episodic
trajectories and organizing them into subgoal-aligned procedural memory units. Compared to methods that store only raw
trajectories or single static workflows, this process naturally involves more computation.

Notably, the additional tokens consumed by PLUGMEM are mostly generated using open-source models, whereas several
baselines rely on a small number of calls to closed-source models. While such approaches may appear token-efficient, their
per-token cost is substantially higher in practice. In contrast, PLUGMEM ’s token usage remains within a practical range
while enabling richer and reusable procedural representations.

Moreover, these costs are primarily incurred during the online phase and can be amortized across multiple task instances
that share similar user intents. Once constructed, the procedural memory graph can be reused without re-running the full
abstraction pipeline, leading to decreasing effective cost as task horizon and diversity increase.

Listing 15. Additional instruction for AgentOccam to incorporate retrieved memory.

============================================================
Prompt AgentOccam Retrieved Memory Instruction
============================================================

The retrieved memory contains relevant information from past experiences that may help
you complete the current task. Use this memory to:

- Learn from similar past tasks and their successful strategies
- Avoid repeating previous mistakes
- Apply proven approaches that worked in similar situations
- Understand patterns and relationships that can guide your actions
When retrieved memory is provided, carefully consider how it relates to your current

task and incorporate relevant insights into your decision-making process.

Some task may require access to Wikipedia, the only way you may access Wikipedia is
through the url "http://<BASE_URL>:8888/wikipedia_en_all_maxi_2022-05/A/User:
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The_other_Kiwix_guy/Landing"
BASE_URL: localhost

F. Task Adaptation via Integrating Task-Specific Heuristics on Top of PLUGMEM

F.1. LongMemEval

Reflective Memory Management. RMM (Tan et al., 2025) introduces a novel reflective mechanism for long-term
memory management. In general, RMM employs Prospective Reflection for knowledge extraction and memory updating,
and Retrospective Reflection to refine memory retrieval in an online reinforcement learning manner.

Inspired by these ideas, we perform task adaptation of PLUGMEM to LongMemEval by incorporating the Prospective
Reflection mechanism from RMM for semantic memory extraction and semantic node updating. Specifically, for memory
extraction, we adopt the memory extraction prompt proposed in RMM to distill semantic memory for PLUGMEM. Compared
to the original semantic memory extraction prompt used in PLUGMEM (Listing 5), the task-adapted version places greater
emphasis on extracting user-specific personal information and includes in-context examples to better align with the
LongMemEval setting. For memory updating, we follow the reflective updating strategy introduced in RMM to update
semantic memory within the memory graph. Specifically, unlike the original PLUGMEM, which directly inserts newly
extracted memory, the task-adapted version first retrieves the Top-K most similar existing semantic memories from the
memory graph by computing cosine similarity between semantic memory embeddings and ranking them accordingly. The
LLM is then queried to decide whether the new memory should be added as a new node or merged with an existing similar
node. The prompt to extract memory and update memory is shown in Listing 16 and Listing 17.

Experiment. We conduct experiments on the multi-session subset of LongMemEval, with results shown in Table 19. The
multi-session subset is among the most challenging portions of LongMemEval, as it requires the agent to answer questions
that primarily involve counting the occurrences of a series of similar events across multiple sessions. This setting not only
places significant demands on the retrieval module of the memory module to retrieve multiple gold memories simultaneously,
but also challenges the structuring and reasoning module to generate precise semantic memories and perform accurate
counting over them. The task-adapted version outperforms the original method for two main reasons: first, the task-adapted
memory extraction prompt produces more precise semantic memories; second, the reflective updating strategy prevents
redundant and repetitive semantic memories from being inserted into the memory graph, thereby enabling more efficient
retrieval.

Table 19. Task Adaptation on the multi-session subset of LongMemEval.

Method Acc. (Multi-session) PMI #TokAvg. Info. Density

PLUGMEM 64.7 5.06 311.9 1.62e-2
PLUGMEM adapt 70.7 5.62 327.5 1.71e-2

Listing 16. Prompt template to extract semantic memory for task adaptation.

============================================================
Prompt Extract_Memory
============================================================

Task Description: Given a session of dialogue between User and Agent, extract the
personal summaries of User. Ensure the output adheres to the following rules:

Output results in OUTPUT format. The top-level tittle is "### Memory". The value should
be a list of dictionaries, where each dictionary has the key "Summary":

- summary: A concise personal summary, which captures relevant information about User
experiences, preferences, and background, across multiple turns.

If no personal summary can be extracted, return NO_TRAIT.
Example:
INPUT:
Turn 0:
- User: Did you check out that new gym in town?
- Agent: Yeah, I did. I am not sure I like the vibe there, though.
Turn 1:
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- User: What was wrong with it?
- Agent: The folks there seemed to care more about how they looked than working out. It

was a little too trendy for me. I am pretty plain.
Turn 2:
- User: Ah, got it. Well, maybe one of the older gyms will work out better for you-or I

guess you could get that treadmill you were talking about before. Are you leaning
one way or the other yet?

- Agent: I am leaning towards the treadmill. I think it will work better for my
lifestyle. I just do not know which type to get. There are so many choices out
there. Do you use a treadmill at your gym? Do you have a suggestion for a home one?

Turn 3:
- User: I usually just lift weights there, to be honest. But I think I have heard good

things about the NordicTrack?
- Agent: Yeah, I have heard good things about that, too. I like the idea of a multi-

exercise piece of equipment. As long as the weather is not too bad, then I prefer
to go for a run. But since it rains quite a bit here, I like the idea of an inside
option. How is the weather in New England?

OUTPUT:
### Memory:
1. **Summary:** User asked about a new gym in town and suggested older gyms or a

treadmill as alternatives.
2. **Summary:** User usually lifts weights at the gym rather than using a treadmill.
3. **Summary:** User has heard good things about the NordicTrack treadmill.
Task: Follow the OUTPUT format demonstrated in the example above and extract the

personal summaries for User from the following dialogue session.
Input: {episodic_memory}
Output:

Listing 17. Prompt template to update semantic memory for task adaptation.

============================================================
Prompt Update_Memory
============================================================

Task Description: Given a list of history personal summaries for a specific user and a
new and similar personal summary from the same user, update the personal history
summaries following the instructions below:

Input format: Both the history personal summaries and the new personal summary are
provided in JSON format, with the top-level keys of "history_summaries" and "
new_summary".

Possible update actions:
- Add: If the new personal summary is not relevant to any history personal summary, add

it.
Format: Add()
- Merge: If the new personal summary is relevant to a history personal summary, merge

them as an updated summary.
Format: Merge(index, merged_summary)
Note: index is the position of the relevant history summary in the list. merged_summary

is the merged summary of the new summary and the relevant history summary. Two
summaries are considered relevant if they discuss the same aspect of the user
personal information or experiences.

Do not include additional explanations or examples in the output-only return the
required action functions.

Example:
INPUT:
History Personal Summaries:
- {{"history_summaries": ["SPEAKER_1 works out although he does not particularlyenjoy

it."]}}
New Personal Summary:
- {{"new_summary": "SPEAKER_1 exercises every Monday and Thursday."}}
OUTPUT ACTION:
Merge(0, SPEAKER_1 exercises every Monday and Thursday, although he does not

particularly enjoy it.)
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Task: Follow the example format above to update the personal history for the given case
.

INPUT:
History Personal Summaries: {history_summaries}
New Personal Summary: {new_summary}
OUTPUT ACTION:

F.2. HotpotQA

Inspiration from HippoRAG2. Our retrieval design is partly inspired by HippoRAG2, which demonstrates that intro-
ducing an explicit graph structure and a controlled multi-hop traversal can outperform purely similarity-based retrieval on
multi-hop QA. In particular, HippoRAG2 separates recognition (filtering/selecting relevant structured units) from expan-
sion (graph-based propagation to retrieve supporting evidence), reducing spurious hops and improving evidence quality.
PLUGMEM adopts this high-level principle but generalizes it to typed agent memory. We construct semantic and procedural
memory graphs and use abstract nodes (concepts/intents) as routing signals to activate specific proposition/prescription
nodes, enabling abstraction-to-specificity traversal. Moreover, analogous to HippoRAG2’s recognition step, PlugMem
employs an LLM-based controller to i) select memory types (GETMODE), ii) propose next-hop abstract signals (GETPLAN),
and iii) decide early stopping or focus candidates under a fixed budget (MULTIHOPCTRL). Finally, we integrate a two-
channel candidate update—link-based expansion through abstract nodes and embedding-based retrieval from a refined
query—followed by reranking/pruning and optional reasoning-based compression.

Test-time Scaling. Beyond the default configuration, PLUGMEM admits two practical test-time “knobs” that consistently
improve performance. First, we can increase the hop limit Tmax, effectively scaling the amount of retrieval computation
at inference time. This allows the retriever to chain additional abstraction–specificity steps and is analogous to test-time
scaling in reasoning-centric methods. We experiment with a subset on HotpotQA, when increasing the multi-hop limit Tmax

from 2 to 4, we observe a performance gain from 66.00/74.73 to 69.00/78.11 (measured in Exact Match/F1-Score).

Secondly, when forming the next-hop query Qt+1, we optionally replace naive concatenation of (Qt, selected facts) with an
LLM-based query synthesizer that rewrites a focused and self-contained query. Empirically, synthesis-based refinement
reduces lexical drift and redundancy, and helps the embedding channel retrieve more targeted evidence in later hops. We
treat both mechanisms as controllable components within the retrieval controller, enabling a smooth accuracy–cost trade-off
depending on the task budget.

F.3. WebArena

Prior work designed specifically for WebArena often incorporates manually engineered domain-level instructions (or
“tips”) into the agent’s input context. A common pattern in task-specific adaptations—such as AWM (Wang et al., 2024b),
SteP (Sodhi et al., 2024), and more recently ColorBrowserAgent (Zhou et al., 2026)— is the inclusion of explicit guidance
that biases the agent toward particular interaction patterns within a site domain (e.g., navigation conventions or preferred UI
elements). In contrast, in our main experiments we deliberately avoid injecting such handcrafted instructions or explicitly
defined action policies. Instead, we rely solely on PLUGMEM ’s ability to automatically store, retrieve, and re-apply both
agent-generated and human demonstration trajectories as structured memory, allowing behavior to emerge from experience
rather than prompt engineering.

Further task adaptation We additionally conduct a targeted case study to examine whether PLUGMEM can benefit from
manual task adaptation when such domain-specific constraints are known. We identify a subset of WebArena tasks that
remain challenging for PLUGMEM and introduce a small set of manually designed instructions into the reasoning module.
Specifically, we observe that PLUGMEM occasionally instructs the agent to navigate via category dropdown menus when
the correct strategy in WebArena is to use the search bar. By incorporating the additional guidance shown in Prompt 18, we
resolve several previously failing cases (see Example 20) by explicitly conditioning the agent’s action selection. WebArena
uses strict, programmatic success criteria but concise queries, where otherwise reasonable strategies may be scored as
incorrect. Although PLUGMEM successfully retrieves relevant procedural knowledge for tasks such as “searching for teeth
grinding mouth guards,” it does not, by default, infer that certain plausible actions are disallowed by the benchmark’s
implicit rules. This case study demonstrates that PLUGMEM natively supports fine-grained manual conditioning when
necessary, while remaining effective without task-specific prompting in the general case.
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Table 20. Example of PLUGMEM with manual instructions.

WebArena Manual Instruction Effect

Query. “ What is the price range of teeth grinding mouth guard in the One Stop Market? ”

PLUGMEM with Manual Instruction.
▷ Reasoning
The user’s question is about determining the price range of wireless earphones in the One Stop Market. According to the guidelines,
when asked about a specific kind of product (e.g., ”wireless earphone”), the agent must use the search bar to locate the product instead
of navigating through dropdown menus. The current observation shows that the search bar is present but appears disabled. However,
based on the relevant experience provided, attempting to use the search bar is still recommended, as its functionality may not be
accurately represented by its appearance.
▷ Final Information
1. Use the search bar to type ”wireless earphone” and press Enter to locate relevant products.
2. Once the search results are displayed, review the prices of the listed wireless earphones to determine the price range.
3. If the search bar does not function, report the issue and consider alternative methods to locate the product, such as contacting
support or exploring other navigation options.

AgentOccam Action 1: type [1913] [wireless earphone] [1]. (agent uses the search bar)

...

PLUGMEM without Manual Instruction.
▷ Reasoning
The user’s question is about finding the price range of teeth grinding mouth guards in the One Stop Market. The observation does not
provide any direct information about teeth grinding mouth guards or their prices. However, the relevant experience suggests that the
agent should use the hierarchical menu structure to navigate to the appropriate category (likely under ”Beauty & Personal Care” or
”Health & Household”) and then refine the search to locate the specific product type. If a price filter is available, it can be applied to
determine the price range.
▷ Final Information
To answer the question, the agent should:
1. Hover over the hierarchical menu structure, starting with categories like ”Beauty & Personal Care” or ”Health & Household.”
2. Look for subcategories related to oral care or dental care.
3. Navigate to the relevant subcategory (e.g., ”Oral Care” or ”Mouth Guards”).
4. Review the products listed in the subcategory to identify teeth grinding mouth guards and note their prices.
5. If a price filter is available, apply it to determine the price range more efficiently.
6. Summarize the price range of the identified products.

AgentOccam Action 1:
hover [1534]. (agent operates the dropdown menu (WRONG!))

...

Listing 18. Additional instructions for the agent and reasonig module for further task-adaptation

============================================================
Prompt WebArena Task-specific Instructions
============================================================

1. When asked about a kind of product (not a category), search for the product using
the search bar instead of using the category dropdown menu.

2. When asked about a category of product, access the dropdown menu through hover
actions.
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